Structure and Electrical Properties of Silicone Rubber Filled with Thermally Reduced Graphene Oxide

被引:20
|
作者
Li, W. [1 ]
Gedde, U. W. [1 ]
Hillborg, H. [1 ,2 ]
机构
[1] KTH Royal Inst Technol, Sch Chem Sci & Engn, S-10044 Stockholm, Sweden
[2] ABB Corp Res, S-72178 Vasteras, Sweden
关键词
Graphene oxide; silicone rubber; nanocomposite; electric stress control; electric field grading material; resistive field grading; HVDC cable accessories; GRAPHITE OXIDE; CHEMICAL-STRUCTURE; CONDUCTIVITY; REDUCTION;
D O I
10.1109/TDEI.2015.005485
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Graphene oxide (GO) was heat treated at different temperatures between 120 and 220 degrees C and the structural changes were assessed by thermogravimetry, infrared spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy (SEM). The resulting reduced graphene oxide (rGO) fillers showed markedly lower oxygen contents (primarily by reduction of epoxide and hydroxyl groups) than GO. SEM of silicone rubber composites containing 3 wt.% rGO or GO filler showed that the nanoparticles were uniformly distributed in the polymer. The rGO-filled composites exhibited electric field-dependent resistivity; the resistivity decreased from 10(14) to 10(11) ohm m as the electric field was increased from 0.2 to 6 kV (mm)(-1). The composites exhibited an increased resistivity after being exposed to a combined thermal cycling and electrical field. An increase in the resistivity of samples aged at 120 degrees C for more than 17 h was observed; the resistivity-electric field behavior and the dielectric constant of the aged composite resembled that of GO-filled composite. The composites exhibited dielectric constant values between 4.0 and 5.2 and a low tan delta (<= 0.015) at frequencies between 10(-2) and 10(4) Hz. The results suggest that the resistivity of the composites can be tuned by adjusting the degree of reduction of GO. The low rGO-filler content that was required to achieve this adequate property profile is attractive, which makes these composites potentially useful as electric field-grading material in HVDC cable accessories. However, this requires that the long-term stability problem can be sensible addressed.
引用
收藏
页码:1156 / 1163
页数:8
相关论文
共 50 条
  • [21] A study on the influence of reduced graphene oxide on the mechanical, dynamic mechanical and tribological properties of silicone rubber nanocomposites
    Sarath, P. S.
    Moni, Grace
    George, Jinu Jacob
    Haponiuk, Jozef T.
    Thomas, Sabu
    George, Soney C.
    JOURNAL OF COMPOSITE MATERIALS, 2021, 55 (15) : 2011 - 2024
  • [22] Properties of Natural Rubber Filled with Graphene Oxide and Mesoporous Silica
    Zhang K.
    Wang J.
    Fei G.
    Xia H.
    Fei, Guoxia (403450356@qq.com), 2018, Sichuan University (34): : 117 - 123
  • [23] Electrical Measurements of Thermally Reduced Graphene Oxide Powders under Pressure
    Park, Hyunsoo
    Lim, Soomook
    Dang Du Nguyen
    Suk, Ji Won
    NANOMATERIALS, 2019, 9 (10)
  • [24] Effects of functional graphene oxide on the properties of phenyl silicone rubber composites
    Xu, Yan
    Gao, Qun
    Liang, Hongqin
    Zheng, Kangsheng
    POLYMER TESTING, 2016, 54 : 168 - 175
  • [25] Contrasting Magnetic Properties of Thermally and Chemically Reduced Graphene Oxide
    Bagani, Kousik
    Ray, Mayukh K.
    Satpati, Biswarup
    Ray, Nihar R.
    Sardar, Manas
    Banerjee, Sangam
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (24): : 13254 - 13259
  • [26] Synthesis and properties of thermally reduced graphene oxide/polyacrylonitrile composites
    Lee, Sungho
    Kim, Yang-Jin
    Kim, Do-Hwan
    Ku, Bon-Cheol
    Joh, Han-Ik
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2012, 73 (06) : 741 - 743
  • [27] Effects of graphene reduction degree on thermal oxidative stability of reduced graphene oxide/silicone rubber nanocomposites
    Bai, Yulian
    Cai, Hai
    Qiu, Xingna
    Fang, Xin
    Zheng, Junping
    HIGH PERFORMANCE POLYMERS, 2015, 27 (08) : 997 - 1006
  • [28] Preparation and Properties of Butyl Rubber/ Reduced Graphene Oxide Composites
    Ma Z.
    Lu X.
    Wang Z.
    Fei G.
    Xia H.
    Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2022, 38 (02): : 73 - 79
  • [29] A Comparative Analysis of the Electrical Properties of Silicone Rubber Composites with Graphene and Unwashed Magnetite
    Malaescu, Iosif
    Sfirloaga, Paula
    Bunoiu, Octavian M.
    Marin, Catalin N.
    MATERIALS, 2024, 17 (23)
  • [30] Enhancing the thermal, electrical, and mechanical properties of silicone rubber by addition of graphene nanoplatelets
    Song, Yingze
    Yu, Jinhong
    Yu, Lianghao
    Alam, Fakhr E.
    Dai, Wen
    Li, Chaoyang
    Jiang, Nan
    MATERIALS & DESIGN, 2015, 88 : 950 - 957