Complex WKB analysis of energy-level degeneracies of non-Hermitian Hamiltonians

被引:72
|
作者
Bender, CM [1 ]
Berry, M
Meisinger, PN
Savage, VM
Simsek, M
机构
[1] Washington Univ, Dept Phys, St Louis, MO 63130 USA
[2] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England
[3] Gazi Univ, Fen Edebiyat Fak, Fiz Bolumu, TR-06500 Teknikokullar Ankara, Turkey
来源
关键词
D O I
10.1088/0305-4470/34/6/101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Hamiltonian H = p(2)+x(4)+iAx, where A is a real parameter, is investigated. The spectrum of H is discrete and entirely real and positive for \A\ < 3.169. As \A\ increases past this point, adjacent pairs of energy levels coalesce and then become complex, starting with the lowest-lying energy levels. For large energies, the values of A at which this merging occurs scale as the three-quarters power of the energy. That is, as \A\ --> infinity and E --> infinity, at the points of coalescence the ratio a = \A\E-3/4 approaches a constant whose numerical value is a(crit) = 1.1838363072914. Conventional WKB theory determines the high-lying energy levels but cannot be used to calculate a(crit). This critical value is predicted exactly by complex WKB theory.
引用
收藏
页码:L31 / L36
页数:6
相关论文
共 50 条
  • [11] RESULTS ON CERTAIN NON-HERMITIAN HAMILTONIANS
    WONG, J
    JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (10) : 2039 - &
  • [12] Making sense of non-Hermitian Hamiltonians
    Bender, Carl M.
    REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) : 947 - 1018
  • [13] Null bootstrap for non-Hermitian Hamiltonians
    Li, Wenliang
    PHYSICAL REVIEW D, 2022, 106 (12)
  • [14] Eigenvalues of non-Hermitian Fibonacci Hamiltonians
    Domínguez-Adame, F
    PHYSICA B-CONDENSED MATTER, 2001, 307 (1-4) : 247 - 250
  • [15] Critical parameters for non-hermitian Hamiltonians
    Fernandez, Francisco M.
    Garcia, Javier
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 247 : 141 - 151
  • [16] Symmetries and Invariants for Non-Hermitian Hamiltonians
    Simon, Miguel Angel
    Buendia, Alvaro
    Muga, J. G.
    MATHEMATICS, 2018, 6 (07):
  • [17] Homotopy characterization of non-Hermitian Hamiltonians
    Wojcik, Charles C.
    Sun, Xiao-Qi
    Bzdusek, Tomas
    Fan, Shanhui
    PHYSICAL REVIEW B, 2020, 101 (20)
  • [18] Adiabaticity condition for non-Hermitian Hamiltonians
    Ibanez, S.
    Muga, J. G.
    PHYSICAL REVIEW A, 2014, 89 (03):
  • [19] Non-Hermitian Degeneracies and Unidirectional Reflectionless Atomic Lattices
    Wu, Jin-Hui
    Artoni, M.
    La Rocca, G. C.
    PHYSICAL REVIEW LETTERS, 2014, 113 (12)
  • [20] Interface between Hermitian and non-Hermitian Hamiltonians in a model calculation
    Jones, H. F.
    PHYSICAL REVIEW D, 2008, 78 (06):