Global relaxation of superconducting qubits

被引:7
|
作者
Ojanen, T.
Niskanen, A. O.
Nakamura, Y.
Abdumalikov, A. A., Jr.
机构
[1] Helsinki Univ Technol, Low Temp Lab, FIN-02015 Helsinki, Finland
[2] JST, CREST, Kawaguchi, Saitama 3320012, Japan
[3] VTT Tech Res Ctr, FIN-02044 Espoo, Finland
[4] NEC Corp Ltd, Fundamental Res Labs, Tsukuba, Ibaraki 305, Japan
[5] RIKEN, Inst Phys & Chem Res, Wako, Saitama 35101, Japan
[6] Phys Tech Inst Acad Sci, Tashkent 700084, Uzbekistan
关键词
D O I
10.1103/PhysRevB.76.100505
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider coupled quantum two-state systems (qubits) exposed to a global relaxation process. The global relaxation refers to the assumption that qubits are coupled to the same quantum bath with approximately equal strengths, appropriate for long-wavelength environmental fluctuations. We show that interactions do not spoil the picture of Dicke's subradiant and super-radiant states where quantum interference effects lead to striking deviations from the independent relaxation picture. Remarkably, the system possess a stable entangled state and a state decaying faster than single qubit excitations. We propose a scheme for how these effects can be experimentally accessed in superconducting flux qubits and, possibly, used in constructing long-lived entangled states.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Superconducting qubits in Russia
    Besedin, I. S.
    Fedorov, G. P.
    Dmitriev, A. Yu
    Ryazanov, V. V.
    QUANTUM ELECTRONICS, 2018, 48 (10) : 880 - 885
  • [22] Teleportation with superconducting qubits
    Salimian, Soheila
    Tavassoly, Mohammad Kazem
    Sehati, Nayere
    EUROPEAN PHYSICAL JOURNAL D, 2020, 74 (07):
  • [23] Superconducting qubits at scale
    Zeissler, Katharina
    NATURE ELECTRONICS, 2024, : 847 - 847
  • [24] Flying superconducting qubits
    Fujii, Toshiyuki
    Shibata, Tomoya
    Nishida, Munehiro
    Hatakenaka, Noriyuki
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2007, 17 (02) : 97 - 100
  • [25] Mechanically induced correlated errors on superconducting qubits with relaxation times exceeding 0.4 ms
    Kono, Shingo
    Pan, Jiahe
    Chegnizadeh, Mahdi
    Wang, Xuxin
    Youssefi, Amir
    Scigliuzzo, Marco
    Kippenberg, Tobias J.
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [26] Decoherence benchmarking of superconducting qubits
    Jonathan J. Burnett
    Andreas Bengtsson
    Marco Scigliuzzo
    David Niepce
    Marina Kudra
    Per Delsing
    Jonas Bylander
    npj Quantum Information, 5
  • [27] Cavity Attenuators for Superconducting Qubits
    Wang, Z.
    Shankar, S.
    Minev, Z. K.
    Campagne-Ibarcq, P.
    Narla, A.
    Devoret, M. H.
    PHYSICAL REVIEW APPLIED, 2019, 11 (01):
  • [28] Quantum memory for superconducting qubits
    Pritchett, EJ
    Geller, MR
    PHYSICAL REVIEW A, 2005, 72 (01)
  • [29] Quantum trajectories of superconducting qubits
    Weber, Steven J.
    Murch, Kater W.
    Kimchi-Schwartz, Mollie E.
    Roch, Nicolas
    Siddiqi, Irfan
    COMPTES RENDUS PHYSIQUE, 2016, 17 (07) : 766 - 777
  • [30] A perspective on superconducting flux qubits
    Dmitriev, A. Yu
    Astafiev, O., V
    APPLIED PHYSICS LETTERS, 2021, 119 (08)