A nonlinear filtering method for geometric subspace tracking

被引:0
|
作者
Srivastava, A [1 ]
机构
[1] Florida State Univ, Dept Stat, Tallahassee, FL 32306 USA
关键词
D O I
10.1109/SAM.2000.878060
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We formulate the problem of trading principal subspaces as a problem in nonlinear filtering. The subspaces are represented by their complex: projection-matrices, and moving subspaces correspond to trajectories on the Grassmann manifold. Taking a Bayesian approach, we impose a smoothness prior on the subspace rotation. Combining ideas from importance sampling and sequential methods, we apply a recursive Monte Carlo approach to solving for MMSE estimates.
引用
下载
收藏
页码:504 / 508
页数:5
相关论文
共 50 条
  • [41] Nonlinear filtering for tracking large objects in radar imagery
    Greenewald, JH
    Musick, SH
    Signal Processing, Sensor Fusion, and Target Recognition XIV, 2005, 5809 : 12 - 22
  • [42] Filtering of systems with nonlinear measurements with an application to target tracking
    Cacace, F.
    Conte, F.
    d'Angelo, M.
    Germani, A.
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2019, 29 (14) : 4956 - 4970
  • [43] Tracking deformable objects with unscented Kalman filtering and geometric active contours
    Dambreville, Samuel
    Rathi, Yogesh
    Tannenbaum, Allen
    2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2006, 1-12 : 2856 - +
  • [44] Tracking deforming objects using particle filtering for geometric active contours
    Rathi, Yogesh
    Vaswani, Namrata
    Tannenbaum, Allen
    Yezzi, Anthony
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (08) : 1470 - 1475
  • [45] Automatic Nonlinear Subspace Identification Using Clustering Judgment Based on Similarity Filtering
    Zhu, Rui
    Jiang, Dong
    Marchesiello, Stefano
    Anastasio, Dario
    Zhang, Dahai
    Fei, Qingguo
    AIAA JOURNAL, 2023, 61 (06) : 2666 - 2674
  • [46] Filtering method for nonlinear systems with constraints
    Wang, LS
    Chiang, YT
    Chang, FR
    IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 2002, 149 (06): : 525 - 531
  • [47] THE GAUSS GALERKIN METHOD IN NONLINEAR FILTERING
    CAMPILLO, F
    RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1986, 20 (02): : 203 - 223
  • [48] Novel nonlinear Kalman filtering method
    Han, Ping
    Sang, Weilin
    Shi, Qingyan
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2015, 36 (03): : 632 - 638
  • [49] Particle Filtering and the Laplace Method for Target Tracking
    Paul Bui Quang
    Musso, Christian
    Le Gland, Francois
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2016, 52 (01) : 350 - 366
  • [50] A Particle Filtering Method for Radar Target Tracking
    Liang, Jianxing
    Chen, Qingliang
    Guo, Yunfeng
    Zhao, Zhen
    Lu, Sanhua
    2022 IEEE 6TH ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2022, : 617 - 620