WGNAM: whole-genome nested association mapping

被引:6
|
作者
Paccapelo, M. Valeria [1 ]
Kelly, Alison M. [1 ]
Christopher, Jack T. [2 ]
Verbyla, Arunas P. [3 ,4 ]
机构
[1] Leslie Res Facil, Dept Agr & Fisheries, Toowoomba, Qld 4350, Australia
[2] Univ Queensland, Leslie Res Facil, Queensland Alliance Agr & Food Innovat QAAFI, Toowoomba, Qld 4350, Australia
[3] AV Data Analyt, Pilton, Qld 4361, Australia
[4] Univ Queensland, Queensland Alliance Agr & Food Innovat QAAFI, Brisbane, Qld 4067, Australia
关键词
QUANTITATIVE TRAIT LOCI; ZEA-MAYS L; CROP IMPROVEMENT; DWARFING GENES; QTL DETECTION; POPULATIONS; DESIGN; DISCOVERY; LINKAGE; MARKERS;
D O I
10.1007/s00122-022-04107-x
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Key message A powerful QTL analysis method for nested association mapping populations is presented. Based on a one-stage multi-locus model, it provides accurate predictions of founder specific QTL effects. Nested association mapping (NAM) populations have been created to enable the identification of quantitative trait loci (QTL) in different genetic backgrounds. A whole-genome nested association mapping (WGNAM) method is presented to perform QTL analysis in NAM populations. The WGNAM method is an adaptation of the multi-parent whole genome average interval mapping approach where the crossing design is incorporated through the probability of inheriting founder alleles for every marker across the genome. Based on a linear mixed model, this method provides a one-stage analysis of raw phenotypic data, molecular markers, and crossing design. It simultaneously scans the whole-genome through an iterative process leading to a model with all the identified QTL while keeping the false positive rate low. The WGNAM approach was assessed through a simulation study, confirming to be a powerful and accurate method for QTL analysis for a NAM population. This novel method can also accommodate a multi-reference NAM (MR-NAM) population where donor parents are crossed with multiple reference parents to increase genetic diversity. Therefore, a demonstration is presented using a MR-NAM population for wheat (Triticum aestivum L.) to perform a QTL analysis for plant height. The strength and size of the putative QTL were summarized enhancing the understanding of the QTL effects depending on the parental origin. Compared to other methods, the proposed methodology based on a one-stage analysis provides greater power to detect QTL and increased accuracy in the estimation of their effects. The WGNAM method establishes the basis for accurate QTL mapping studies for NAM and MR-NAM populations.
引用
收藏
页码:2213 / 2232
页数:20
相关论文
共 50 条
  • [11] Mutation mapping and identification by whole-genome sequencing
    Leshchiner, Ignaty
    Alexa, Kristen
    Kelsey, Peter
    Adzhubei, Ivan
    Austin-Tse, Christina A.
    Cooney, Jeffrey D.
    Anderson, Heidi
    King, Matthew J.
    Stottmann, Rolf W.
    Garnaas, Maija K.
    Ha, Seungshin
    Drummond, Iain A.
    Paw, Barry H.
    North, Trista E.
    Beier, David R.
    Goessling, Wolfram
    Sunyaev, Shamil R.
    GENOME RESEARCH, 2012, 22 (08) : 1541 - 1548
  • [12] Quantifying the mapping precision of genome-wide association studies using whole-genome sequencing data
    Yang Wu
    Zhili Zheng
    Peter M. Visscher
    Jian Yang
    Genome Biology, 18
  • [13] Quantifying the mapping precision of genome-wide association studies using whole-genome sequencing data
    Wu, Yang
    Zheng, Zhili
    Visscher, Peter M.
    Yang, Jian
    GENOME BIOLOGY, 2017, 18
  • [14] Effects of single SNPs, haplotypes, and whole-genome LD maps on accuracy of association mapping
    Maniatis, Nikolas
    Collins, Andrew
    Morton, Newton E.
    GENETIC EPIDEMIOLOGY, 2007, 31 (03) : 179 - 188
  • [15] Efficient whole-genome association mapping using local phylogenies for unphased genotype data
    Ding, Zhihong
    Mailund, Thomas
    Song, Yun S.
    BIOINFORMATICS, 2008, 24 (19) : 2215 - 2221
  • [16] Whole-genome association for complex psychiatric disorders
    Goldman, David
    NEUROPSYCHOPHARMACOLOGY, 2008, 33 (01) : 201 - 201
  • [17] Whole-genome association studies of complex diseases
    Sham, Pak C.
    Cherny, Stacey S.
    Kao, Patrick Y. P.
    Song, You-Qiang
    Chan, Danny
    Cheung, Kenneth M. C.
    CURRENT ORTHOPAEDICS, 2008, 22 (04): : 251 - 258
  • [18] Genomics - Genetic association by whole-genome analysis?
    Kwok, PY
    SCIENCE, 2001, 294 (5547) : 1669 - 1670
  • [19] Determinants of the success of whole-genome association testing
    Clark, AG
    Boerwinkle, E
    Hixson, J
    Sing, CF
    GENOME RESEARCH, 2005, 15 (11) : 1463 - 1467
  • [20] Whole-genome association study of bipolar disorder
    Sklar, P.
    Smoller, J. W.
    Fan, J.
    Ferreira, M. A. R.
    Perlis, R. H.
    Chambert, K.
    Nimgaonkar, V. L.
    McQueen, M. B.
    Faraone, S. V.
    Kirby, A.
    de Bakker, P. I. W.
    Ogdie, M. N.
    Thase, M. E.
    Sachs, G. S.
    Todd-Brown, K.
    Gabriel, S. B.
    Sougnez, C.
    Gates, C.
    Blumenstiel, B.
    Defelice, M.
    Ardlie, K. G.
    Franklin, J.
    Muir, W. J.
    McGhee, K. A.
    MacIntyre, D. J.
    McLean, A.
    VanBeck, M.
    McQuillin, A.
    Bass, N. J.
    Robinson, M.
    Lawrence, J.
    Anjorin, A.
    Curtis, D.
    Scolnick, E. M.
    Daly, M. J.
    Blackwood, D. H.
    Gurling, H. M.
    Purcell, S. M.
    MOLECULAR PSYCHIATRY, 2008, 13 (06) : 558 - 569