Efficient minus and signed domination in graphs

被引:0
|
作者
Lu, CL
Peng, SL
Tang, CY
机构
[1] Natl Ctr High Performance Comp, Hsinchu 300, Taiwan
[2] Natl Dong Hwa Univ, Dept Comp Sci & Informat Engn, Hualien, Taiwan
[3] Natl Tsing Hua Univ, Dept Comp Sci, Hsinchu 300, Taiwan
来源
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that the efficient minus (resp., signed) domination problem is NP-complete for chordal graphs, chordal bipartite graphs, planar bipartite graphs and planar graphs of maximum degree 4 (resp., for chordal graphs). Based on the forcing property on blocks of vertices and automata theory, we provide a uniform approach to show that in a special class of interval graphs, every graph (resp., every graph with no vertex of odd degree) has an efficient minus (resp., signed) dominating function. Besides, we show that the efficient minus domination problem is equivalent to the efficient domination problem on trees.
引用
收藏
页码:241 / 253
页数:13
相关论文
共 50 条
  • [21] INVERSE MINUS DOMINATION IN GRAPHS
    D'Souza, Wilma Laveena
    Chaitra, V
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2022, 29 (01): : 31 - 44
  • [22] Minus total domination in graphs
    Xing, Hua-Ming
    Liu, Hai-Long
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2009, 59 (04) : 861 - 870
  • [23] On the Mixed Minus Domination in Graphs
    Xu B.
    Kong X.
    Journal of the Operations Research Society of China, 2013, 1 (3) : 385 - 391
  • [24] On Signed Star Domination in Graphs
    Yan-cai Zhao
    Er-fang Shan
    Lian-ying Miao
    Zuo-song Liang
    Acta Mathematicae Applicatae Sinica, English Series, 2019, 35 : 452 - 457
  • [25] Signed Roman domination in graphs
    Ahangar, H. Abdollahzadeh
    Henning, Michael A.
    Loewenstein, Christian
    Zhao, Yancai
    Samodivkin, Vladimir
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 27 (02) : 241 - 255
  • [26] Signed domination in regular graphs
    LRI, URA 410 CNRS, Université de Paris-Sud, 91405 Orsay Cedex, France
    Discrete Math, 1-3 (287-293):
  • [27] Restrained domination in signed graphs
    Mathias, Anisha Jean
    Sangeetha, V
    Acharya, Mukti
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2020, 12 (01) : 155 - 163
  • [28] Independent domination in signed graphs
    Jeyalakshmi, P.
    Karuppasamy, K.
    Arockiaraj, S.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (05)
  • [29] Partial signed domination in graphs
    Hattingh, JH
    Ungerer, E
    Henning, MA
    ARS COMBINATORIA, 1998, 48 : 33 - 42
  • [30] On the signed Italian domination of graphs
    Karamzadeh, Ashraf
    Maimani, Hamid Reza
    Zaeembashi, Ali
    COMPUTER SCIENCE JOURNAL OF MOLDOVA, 2019, 27 (02) : 204 - 229