DUALITY FOR CCD LATTICES

被引:0
|
作者
Marmolejo, Francisco [1 ]
Rosebrugh, Robert [2 ]
Wood, R. J. [3 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Area Invest Cient, Mexico City 04510, DF, Mexico
[2] Mt Allison Univ, Dept Math, Sackville, NB E0A 3C0, Canada
[3] Dalhousie Univ, Dept Math & Stat, Halifax, NS B3H 3J5, Canada
来源
基金
加拿大自然科学与工程研究理事会;
关键词
adjunction; completely distributive; idempotent; monadic; proarrow equipment; cauchy complete;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The 2-category of constructively completely distributive lattices is shown to be bidual to a 2-category of generalized orders that admits a monadic schizophrenic object biadjunction over the 2-category of ordered sets.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 50 条
  • [21] DUALITY THEOREMS FOR FINITELY GENERATED VECTOR LATTICES
    BEYNON, WM
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1975, 31 (JUL) : 114 - 128
  • [22] Stone like duality in almost distributive lattices
    Rao, G. C.
    Katakam, S. B. T. Sundari
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2014, 7 (03)
  • [23] Distributive Lattices with a Generalized Implication: Topological Duality
    Castro, Jorge E.
    Arturo Celani, Sergio
    Jansana, Ramon
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2011, 28 (02): : 227 - 249
  • [24] Distributive lattices, bipartite graphs and Alexander duality
    Herzog, J
    Hibi, T
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2005, 22 (03) : 289 - 302
  • [25] Distributive Lattices, Bipartite Graphs and Alexander Duality
    Jürgen Herzog
    Takayuki Hibi
    Journal of Algebraic Combinatorics, 2005, 22 : 289 - 302
  • [26] MAPPING BETWEEN HIERARCHICAL LATTICES BY RENORMALIZATION AND DUALITY
    OTTAVI, H
    ALBINET, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (10): : 2961 - 2971
  • [27] Priestley duality for N4-lattices
    Jansana, Ramon
    Rivieccio, Umberto
    PROCEEDINGS OF THE 8TH CONFERENCE OF THE EUROPEAN SOCIETY FOR FUZZY LOGIC AND TECHNOLOGY (EUSFLAT-13), 2013, 32 : 223 - 229
  • [28] Disjointly homogeneous Banach lattices: Duality and complementation
    Flores, J.
    Hernandez, F. L.
    Spinu, E.
    Tradacete, P.
    Troitsky, V. G.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (09) : 5858 - 5885
  • [29] On duality and endomorphisms of lattices of closed convex sets
    Slomka, Boaz A.
    ADVANCES IN GEOMETRY, 2011, 11 (02) : 225 - 239
  • [30] Distributive Lattices with a Generalized Implication: Topological Duality
    Jorge E. Castro
    Sergio Arturo Celani
    Ramon Jansana
    Order, 2011, 28 : 227 - 249