Stem CO2 efflux of a Populus nigra stand:: effects of elevated CO2, fertilization, and shoot size

被引:7
|
作者
Liberloo, M. [1 ]
De Angelis, P. [2 ]
Ceulemans, R. [1 ]
机构
[1] Univ Instelling Antwerp, Res Grp Plant & Vegetat Ecol, Dept Biol, B-2610 Antwerp, Belgium
[2] Univ Tuscia, DISAFRI, I-01100 Viterbo, Italy
关键词
EUROFACE; growth rate; nitrogen; respiration; sap flow; size class; temperature function; woody tissue;
D O I
10.1007/s10535-008-0063-y
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
To determine whether long-term growth in elevated atmospheric CO(2) concentration [CO(2)] and nitrogen fertilization affects woody tissue CO(2) efflux, we measured stem CO(2) efflux as a function of temperature in three different size classes of shoots of Populus nigra L. (clone Jean Pourtet) on two occasions in 2004. Trees were growing in a short rotation coppice in ambient (370 mu mol mol(-1)) and elevated (550 mu mol mol(-1), realised by a Free Air Carbon dioxide Enrichment system) [CO(2)], and measurements were performed during the third growing season of the second rotation. Elevated CO(2) did not affect Q(10) or specific stem CO(2) efflux (E(10)) of overall poplar shoots. The lack of any effect of N on stem CO(2) efflux indicated that nutrients were sufficient. Specific stem CO(2) efflux differed significantly between shoot sizes, emphasizing the importance of tree size when scaling-up respiration measurements to the stand level. Variation in stem CO(2) efflux could not be satisfactorily explained by temperature as the only driving variable. We hypothesize that transport of CO(2) with the sapflow might have confounded our results and could explain the high Q(10) values reported here. Predicting the respiratory carbon loss in a future elevated [CO(2)] world must therefore move beyond the single-factor temperature dependent respiration model and involve multiple factors affecting stem CO(2) efflux rate.
引用
收藏
页码:299 / 306
页数:8
相关论文
共 50 条
  • [41] The Effect of Rapid Development on Soil CO2 Efflux in a Cellulosic Biofuel Stand
    Wright-Osment, Nicholas
    Starr, Gregory
    Aubrey, Doug P.
    Rau, Benjamin M.
    Staudhammer, Christina L.
    FORESTS, 2023, 14 (02):
  • [42] The effects of elevated CO2 on bog rush (Juncus effusus L.) growing near a natural CO2 springs I.: Effects on shoot anatomy
    Turk, B
    Pfanz, H
    Vodnik, D
    Bernik, R
    Wittmann, C
    Sinkovic, T
    Batic, F
    PHYTON-ANNALES REI BOTANICAE, 2002, 42 (01) : 13 - 23
  • [43] ELEVATED CO2 AND HYBRID POPLAR - A DETAILED INVESTIGATION OF ROOT AND SHOOT GROWTH AND PHYSIOLOGY OF POPULUS-EURAMERICANA, PRIMO
    BOSAC, C
    GARDNER, SDL
    TAYLOR, G
    WILKINS, D
    FOREST ECOLOGY AND MANAGEMENT, 1995, 74 (1-3) : 103 - 116
  • [44] Responses of two Populus clones to elevated atmospheric CO2 concentration in the field
    Tognetti, R
    Longobucco, A
    Raschi, A
    Miglietta, F
    Fumagalli, I
    ANNALS OF FOREST SCIENCE, 1999, 56 (06) : 493 - 500
  • [45] A model of the production and transport of CO2 in soil:: predicting soil CO2 concentrations and CO2 efflux from a forest floor
    Jassal, RS
    Black, TA
    Drewitt, GB
    Novak, MD
    Gaumont-Guay, D
    Nesic, Z
    AGRICULTURAL AND FOREST METEOROLOGY, 2004, 124 (3-4) : 219 - 236
  • [46] Sites of Action of Elevated CO2 on Leaf Development in Rice: Discrimination between the Effects of Elevated CO2 and Nitrogen Deficiency
    Tsutsumi, Koichi
    Konno, Masae
    Miyazawa, Shin-Ichi
    Miyao, Mitsue
    PLANT AND CELL PHYSIOLOGY, 2014, 55 (02) : 258 - 268
  • [47] Unexpected Responses of Bean Leaf Size to Elevated CO2
    Bunce, James
    PLANTS-BASEL, 2022, 11 (07):
  • [48] Time-dependent responses of soil CO2 efflux components to elevated atmospheric [CO2] and temperature in experimental forest mesocosms
    Guanghui Lin
    Paul T. Rygiewicz
    James R. Ehleringer
    Mark G. Johnson
    David T. Tingey
    Plant and Soil, 2001, 229 : 259 - 270
  • [49] Time-dependent responses of soil CO2 efflux components to elevated atmospheric [CO2] and temperature in experimental forest mesocosms
    Lin, GH
    Rygiewicz, PT
    Ehleringer, JR
    Johnson, MG
    Tingey, DT
    PLANT AND SOIL, 2001, 229 (02) : 259 - 270
  • [50] Narrowing uncertainties in the effects of elevated CO2 on crops
    Toreti, Andrea
    Deryng, Delphine
    Tubiello, Francesco N.
    Muller, Christoph
    Kimball, Bruce A.
    Moser, Gerald
    Boote, Kenneth
    Asseng, Senthold
    Pugh, Thomas A. M.
    Vanuytrecht, Eline
    Pleijel, Hakan
    Webber, Heidi
    Durand, Jean-Louis
    Dentener, Frank
    Ceglar, Andrej
    Wang, Xuhui
    Badeck, Franz
    Lecerf, Remi
    Wall, Gerard W.
    van den Berg, Maurits
    Hoegy, Petra
    Lopez-Lozano, Raul
    Zampieri, Matteo
    Galmarini, Stefano
    O'Leary, Garry J.
    Manderscheid, Remy
    Mencos Contreras, Erik
    Rosenzweig, Cynthia
    NATURE FOOD, 2020, 1 (12): : 775 - 782