Degradation of CO2 through dielectric barrier discharge microplasma

被引:33
|
作者
Duan, Xiaofei [1 ]
Li, Yanping [1 ]
Ge, Wenjie [1 ]
Wang, Baowei [1 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Minist Educ, Key Lab Green Chem Technol, Tianjin 300072, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
carbon dioxide; carbon monoxide; dielectric barrier discharge; degradation; microplasma; CARBON-DIOXIDE; GAS TUNNEL; PLASMA; DECOMPOSITION; CONSUMPTION; CONVERSION; SYNGAS; CHINA;
D O I
10.1002/ghg.1425
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The continually increasing use of fossil fuels throughout the world has caused carbon dioxide (CO2) concentration to grow rapidly in the atmosphere. Increasing CO2 emissions are the major cause of global warming, and a number of studies have been done to show the predicted effects of global warming. This paper reported a method of degradation of CO2 through dielectric barrier discharge (DBD) plasma; a microplasma reactor was used to decompose CO2 into carbon monoxide (CO) at normal atmosphere and room temperature. Gas chromatography was used to analyze the compositions of the outlet gases. No carbon deposits were found in this work. A variety of parameters, such as feed flow rate, input power, frequency, discharge gap, and external electrode length were investigated. The effects of these parameters on CO2 conversion were examined. At the same time, the effects of feed flow rate and input power on the energy efficiency were studied. The results indicated that a higher conversion of CO2 can be realized with a lower feed flow rate, a limited higher input power and a lower frequency. However, a higher feed flow rate and a lower input power were beneficial for energy utilization. The discharge gap had a little effect on the conversion of CO2 in microplasma reactor. In this work, the highest conversion of CO2 was 18.0%, and the highest energy efficiency was 3.8%. The DBD microplasma is a promising method for decomposing CO2.(c) 2014 Society of Chemical Industry and John Wiley & Sons, Ltd
引用
收藏
页码:131 / 140
页数:10
相关论文
共 50 条
  • [31] Plasma-catalytic CO2 hydrogenation to ethane in a dielectric barrier discharge reactor
    Ashford, Bryony
    Poh, Chee-Kok
    Ostrikov, Kostya
    Chen, Luwei
    Tu, Xin
    JOURNAL OF CO2 UTILIZATION, 2022, 57
  • [32] Routes to increase the conversion and the energy efficiency in the splitting of CO2 by a dielectric barrier discharge
    Ozkan, A.
    Bogaerts, A.
    Reniers, F.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (08)
  • [33] Spectroscopic study of CO2 and CO2-N2 mixture plasma using dielectric barrier discharge
    Khan, M. I.
    Rehman, N. U.
    Khan, Shabraz
    Ullah, Naqib
    Masood, Asad
    Ullah, Aman
    AIP ADVANCES, 2019, 9 (08)
  • [34] Enhanced CO2 conversion by frosted dielectric surface with ZrO2 coating in a dielectric barrier discharge reactor
    Ding, Wanyan
    Xia, Mengyu
    Shen, Chenyang
    Wang, Yaolin
    Zhang, Zhitao
    Tu, Xin
    Liu, Chang-jun
    JOURNAL OF CO2 UTILIZATION, 2022, 61
  • [35] SnS2/MWNTs/sponge electrode combined with plasma dielectric barrier discharge catalytic system: CO2 reduction and pollutant degradation
    Shen Y.
    Long Y.
    Li F.
    Ji Y.
    Cong Y.
    Jiang B.
    Zhang Y.
    Chemosphere, 2023, 344
  • [36] Effect of barrier capacitance on self-organized structure in dielectric-barrier discharge microplasma
    Mukaigawa, Seiji
    Fujiwara, Kazunobu
    Sato, Tomohiko
    Odagiri, Ryo
    Kudoh, Tomohiro
    Yokota, Atsuya
    Oguni, Kyohei
    Takaki, Koichi
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2016, 55 (07)
  • [37] CeO2-Enhanced CO2 Decomposition via Frosted Dielectric Barrier Discharge Plasma
    Xia, Mengyu
    Ding, Wanyan
    Shen, Chenyang
    Zhang, Zhitao
    Liu, Chang -jun
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (29) : 10455 - 10460
  • [38] Degradation of diazinon by dielectric barrier discharge plasma
    Rodrigues Junior, Francisco E.
    Fernandes, Fabiano A. N.
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (01):
  • [39] Development of a dielectric barrier discharge (DBD) cryo-microplasma: generation and diagnostics
    Ishihara, Daisuke
    Noma, Yuri
    Stauss, Sven
    Sai, Masaki
    Tomai, Takaaki
    Terashima, Kazuo
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2008, 17 (03):
  • [40] Degradation of a Dielectric Barrier Discharge Plasma Actuator
    Rigit, Andrew Ragai Henry
    Lai, Koon Chun
    Bong, David Boon Liang
    ICPADM 2009: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON PROPERTIES AND APPLICATIONS OF DIELECTRIC MATERIALS, VOLS 1-3, 2009, : 569 - 572