A new hyperspectral image classification method based on spatial-spectral features

被引:21
|
作者
Qu Shenming [1 ,2 ,3 ]
Li Xiang [1 ]
Gan Zhihua [1 ]
机构
[1] Henan Univ, Sch Software, Kaifeng 475001, Henan, Peoples R China
[2] Henan Univ, Inst Intelligence Networks Syst, Kaifeng 475001, Henan, Peoples R China
[3] Henan Univ, Int Inst Intelligent Informat Proc, Kaifeng 475001, Henan, Peoples R China
关键词
INFORMATION;
D O I
10.1038/s41598-022-05422-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In recent years, more and more deep learning frameworks are being applied to hyperspectral image classification tasks and have achieved great results. However, the existing network models have higher model complexity and require more time consumption. Traditional hyperspectral image classification methods tend to ignore the correlation between local spatial features. In this paper, a new hyperspectral image classification method is proposed, which combines two-dimensional Gabor filter with random patch convolution (GRPC) feature extraction to obtain spatial-spectral feature information. The method firstly performs dimensionality reduction through principal component analysis and linear discriminant analysis and extracts the edge texture and spatial information of the image using a Gabor filter for the reduced-dimensional image. Next, the extracted information is convolved with random patches to extract spectral features. Finally, the spatial features and multi-level spectral features are fused to classify the images using the Support Vector Machine classifier. In order to verify the performance of this method, experiments were conducted on three widely used datasets of Indian Pines, Pavia University and Kennedy Space Center. The overall classification accuracy reached 98.09%, 99.64% and 96.53%, which are all higher than other comparison methods. The experimental results reveal the superiority of the proposed method in classification accuracy.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Spatial-spectral hyperspectral image classification based on information measurement and CNN
    Lin, Lianlei
    Chen, Cailu
    Xu, Tiejun
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2020, 2020 (01)
  • [22] Spatial-spectral hyperspectral image classification based on information measurement and CNN
    Lianlei Lin
    Cailu Chen
    Tiejun Xu
    EURASIP Journal on Wireless Communications and Networking, 2020
  • [23] COMBINATION OF BAND SELECTION AND WEIGHTED SPATIAL-SPECTRAL METHOD FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Li, Xiangjuan
    Mountrakis, Giorgos
    Zhao, ChuanYuan
    Zhang, Feng
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4685 - 4688
  • [24] Sparse Multiple Kernel Learning for Hyperspectral Image Classification Using Spatial-spectral Features
    Liu, Tianzhu
    Jin, Xudong
    Gu, Yanfeng
    PROCEEDINGS OF 2016 SIXTH INTERNATIONAL CONFERENCE ON INSTRUMENTATION & MEASUREMENT, COMPUTER, COMMUNICATION AND CONTROL (IMCCC 2016), 2016, : 614 - 618
  • [25] An efficient spatial-spectral classification method for hyperspectral imagery
    Li, Wei
    Du, Qian
    SATELLITE DATA COMPRESSION, COMMUNICATIONS, AND PROCESSING X, 2014, 9124
  • [26] Hyperspectral Image Classification Based on Automatic Threshold Attribute Profiles and Spatial-Spectral Encoding Union Features
    Yang, Peiqi
    Wang, Mingjun
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (12)
  • [27] GTFN: GCN and Transformer Fusion Network With Spatial-Spectral Features for Hyperspectral Image Classification
    Yang, Aitao
    Li, Min
    Ding, Yao
    Hong, Danfeng
    Lv, Yilong
    He, Yujie
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [28] Spectral Similarity Based Multiscale Spatial-Spectral Preprocessing Framework for Hyperspectral Image Classification
    Akyurek, Hasan Ali
    Kocer, Baris
    TRAITEMENT DU SIGNAL, 2024, 41 (04) : 1763 - 1779
  • [29] A Spatial-Spectral Transformer for Hyperspectral Image Classification Based on Global Dependencies of Multi-Scale Features
    Ma, Yunxuan
    Lan, Yan
    Xie, Yakun
    Yu, Lanxin
    Chen, Chen
    Wu, Yusong
    Dai, Xiaoai
    REMOTE SENSING, 2024, 16 (02)
  • [30] GTFN: GCN and Transformer Fusion Network With Spatial-Spectral Features for Hyperspectral Image Classification
    Yang, Aitao
    Li, Min
    Ding, Yao
    Hong, Danfeng
    Lv, Yilong
    He, Yujie
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61