Note on domination and minus domination numbers in cubic graphs

被引:2
|
作者
Chen, YJ [1 ]
Cheng, TCE
Ng, CT
Shan, EF
机构
[1] Hong Kong Polytech Univ, Dept Logist, Kowloon, Hong Kong, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
[3] Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China
基金
中国国家自然科学基金;
关键词
domination number; minus domination number; cubic graphs;
D O I
10.1016/j.aml.2004.11.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a graph. A subset S of V is called a dominating set if each vertex of V - S has at least one neighbor in S. The domination number gamma (G) equals the minimum cardinality of a dominating set in G. A minus dominating function on G is a function f : V -> {-1, 0, 1} such that f(N[v]) = Sigma(u is an element of N[v]) f(u) >= 1 for each v is an element of V, where N[v] is the closed neighborhood of v. The minus domination number of G is gamma(-)(G) = min{Sigma(v is an element of V) f(v) vertical bar f is a minus dominating function on G). It was incorrectly shown in [X. Yang, Q. Hou, X. Huang, H. Xuan, The difference between the domination number and minus domination number of a cubic graph, Applied Mathematics Letters 16 (2003) 1089-1093] that there is an infinite family of cubic graphs in which the difference gamma - gamma(-) can be made arbitrary large. This note corrects the mistakes in the proof and poses a new problem on the upper bound for gamma - gamma(-) in cubic graphs. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1062 / 1067
页数:6
相关论文
共 50 条
  • [21] A note on graphs with large girth and small minus domination number
    Lee, J
    Sohn, MY
    Kim, HK
    [J]. DISCRETE APPLIED MATHEMATICS, 1999, 91 (1-3) : 299 - 303
  • [22] Total Domination Versus Domination in Cubic Graphs
    Joanna Cyman
    Magda Dettlaff
    Michael A. Henning
    Magdalena Lemańska
    Joanna Raczek
    [J]. Graphs and Combinatorics, 2018, 34 : 261 - 276
  • [23] Domination versus independent domination in cubic graphs
    Southey, Justin
    Henning, Michael A.
    [J]. DISCRETE MATHEMATICS, 2013, 313 (11) : 1212 - 1220
  • [24] Total Domination Versus Domination in Cubic Graphs
    Cyman, Joanna
    Dettlaff, Magda
    Henning, Michael A.
    Lemanska, Magdalena
    Raczek, Joanna
    [J]. GRAPHS AND COMBINATORICS, 2018, 34 (01) : 261 - 276
  • [25] Domination and Total Domination Contraction Numbers of Graphs
    Huang, Jia
    Xu, Jun-Ming
    [J]. ARS COMBINATORIA, 2010, 94 : 431 - 443
  • [26] DOMINATION SUBDIVISION AND DOMINATION MULTISUBDIVISION NUMBERS OF GRAPHS
    Dettlaff, Magda
    Raczek, Joanna
    Topp, Jerzy
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (04) : 829 - 839
  • [27] GRAPHS WITH EQUAL DOMINATION AND CERTIFIED DOMINATION NUMBERS
    Dettlaff, Magda
    Lemanska, Magdalena
    Miotk, Mateusz
    Topp, Jerzy
    Ziemann, Radoslaw
    Zylinski, Pawel
    [J]. OPUSCULA MATHEMATICA, 2019, 39 (06) : 815 - 827
  • [28] Minus domination number in cubic graph
    Kang, L.
    Cai, M.
    [J]. Chinese Science Bulletin, 43 (06):
  • [29] Graphs with equal domination and independent domination numbers
    Gupta, Purnima
    Singh, Rajesh
    Arumugam, S.
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (02) : 691 - 696
  • [30] On graphs with equal domination and connected domination numbers
    Arumugam, S
    Joseph, JP
    [J]. DISCRETE MATHEMATICS, 1999, 206 (1-3) : 45 - 49