Thermo-opto-mechanical properties of AlN nanostructures: a promising material for NEMS applications

被引:15
|
作者
Guisbiers, G. [1 ]
Buchaillot, L. [1 ]
机构
[1] IEMN, UMR8520, F-59652 Villeneuve Dascq, France
关键词
D O I
10.1088/0022-3727/41/17/172001
中图分类号
O59 [应用物理学];
学科分类号
摘要
The properties of aluminium nitride (AlN) are investigated at the nanoscale for different shapes of nanostructures. Spherical nanoparticles, cylindrical nanowires and nanofilms are the considered shapes. The size and shape effects on the creep temperature, melting temperature, residual stress and energy bandgap are discussed. The creep behaviour of AlN is analysed and compared with aluminium (Al) pure metal. The higher creep resistance of AlN is demonstrated. The transition from inverse Hall-Petch to the Hall-Petch relation is found to be around similar to 15-18 nm in agreement with other authors. The energy bandgap of AlN nanostructures is blue-shifted with the size reduction and the shape of the nanostructure, according to the following relation: E-g(nanoparticle) > E-g(nanowire) > E-g(nanofilm).
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Towards integrated thermo-opto-mechanical analysis
    Ponsy, John
    Pavageau, Adrien
    [J]. OPTICAL DESIGN AND ENGINEERING IX, 2024, 13019
  • [2] Tensile Strained Germanium Microstructures: A Comprehensive Analysis of Thermo-Opto-Mechanical Properties
    Manganelli, Costanza Lucia
    Virgilio, Michele
    Montanari, Michele
    Zaitsev, Ignatii
    Andriolli, Nicola
    Faralli, Stefano
    Tirelli, Stefano
    Dagnano, Fabio
    Klesse, Wolfgang Matthias
    Spirito, Davide
    [J]. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2021, 218 (21):
  • [3] Thermo-opto-mechanical analysis of a cubesat lens mount
    Champagne, James A.
    Burge, James H.
    Crowther, Blake G.
    [J]. OPTOMECHANICS 2011: INNOVATIONS AND SOLUTIONS, 2011, 8125
  • [4] Bi-material crystalline whispering gallery mode microcavity structure for thermo-opto-mechanical stabilization
    Itobe, Hiroki
    Nakagawa, Yosuke
    Mizumoto, Yuta
    Kangawa, Hiroi
    Kakinuma, Yasuhiro
    Tanabe, Takasumi
    [J]. AIP ADVANCES, 2016, 6 (05):
  • [5] Experimenting with a nonlinear Thermo-Opto-Mechanical System TOM1A
    Huba, T.
    Huba, M.
    [J]. IFAC PAPERSONLINE, 2015, 48 (29): : 188 - 193
  • [6] Remote Control of Thermo-opto-mechanical Plant via Raspberry Pi
    Zakova, Katarina
    Rabek, Matej
    [J]. IFAC PAPERSONLINE, 2018, 51 (06): : 479 - 483
  • [7] 3D Model of the Thermo-Opto-Mechanical Plant for Use in Control Education
    Podrouzek, Michal
    Matisak, Jakub
    Zakova, Katarina
    [J]. PROCEEDINGS OF THE 2020 30TH INTERNATIONAL CONFERENCE CYBERNETICS & INFORMATICS (K&I '20), 2020,
  • [8] Results from SIM's Thermo-Opto-Mechanical (TOM3) testbed
    Goullioud, R.
    Lindensmith, C. A.
    Hahn, I.
    [J]. ADVANCES IN STELLAR INTERFEROMETRY PTS 1 AND 2, 2006, 6268
  • [9] M1 mirror print-thru investigation and performance on the thermo-opto-mechanical testbed for the space interferometry mission
    Feria, V. Alfonso
    Lam, Jonathan
    Van Buren, Dave
    [J]. OPTOMECHANICAL TECHNOLOGIES FOR ASTRONOMY, PTS 1 AND 2, 2006, 6273
  • [10] Investigations on crystal perfection, mechanical and thermo-electric properties of L-ornithine monohydrochloride single crystal: A promising material for nonlinear optical applications
    Rathee, Shish Pal
    Dhas, S. A. Martin Britto
    Singh, Budhendra
    Bdikin, Igor
    Ahlawat, Dharamvir Singh
    [J]. MATERIALS CHEMISTRY AND PHYSICS, 2017, 200 : 376 - 383