Non-linear redshift distortions: the two-point correlation function

被引:12
|
作者
Bharadwaj, S [1 ]
机构
[1] Indian Inst Technol, Dept Phys & Meteorol, Kharagpur 721302, W Bengal, India
[2] Indian Inst Technol, Ctr Theoret Studies, Kharagpur 721302, W Bengal, India
关键词
galaxies : clusters : general; galaxies : distances and redshifts; cosmology : observations; cosmology : theory; dark matter; large-scale structure of Universe;
D O I
10.1046/j.1365-8711.2001.04738.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider a situation where the density and peculiar velocities in real space are linear. and we calculate xi (s), the two-point correlation function in redshift space, incorporating all nonlinear effects which arise as a consequence of the map from real to redshift space. Our result is non-perturbative and it includes the effects of possible multi-streaming in redshift space. We find that the deviations from the predictions of the linear redshift distortion analysis increase for the higher spherical harmonics of xi (s). While the deviations are insignificant for the monopole eo, the hexadecapole xi (4) exhibits large deviations from the linear predictions. For a COBE normalized Gamma = 0.25, h = 0.5 cold dark matter (CDM) power spectrum, our results for xi (4) deviate from the linear predictions by a factor of two on the scale of similar to 10 h(-1) Mpc. The deviations from the linear predictions depend separately on f(Omega) and b. This holds the possibility of removing the degeneracy that exists between these two parameters in the linear analysis of redshift surveys which yields only beta = f(Omega)/b. We also show that the commonly used phenomenological model. where the non-linear redshift two-point correlation function is calculated by convolving the linear redshift correlation function with an isotropic pair velocity distribution function, is a limiting case of our result.
引用
收藏
页码:577 / 587
页数:11
相关论文
共 50 条
  • [11] THE TWO-POINT CORRELATION FUNCTION OF THE GRBS
    Bagoly, Zsolt
    ACTA POLYTECHNICA, 2025, 65 (01) : 9 - 15
  • [12] The evolution of the two-point correlation function
    Colin, P
    LARGE SCALE STRUCTURE: TRACKS AND TRACES, 1998, : 257 - 258
  • [13] The effect of redshift-space distortions on projected two-point clustering measurements
    Nock, Kelly
    Percival, Will J.
    Ross, Ashley J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 407 (01) : 520 - 532
  • [14] The redshift-space two-point correlation function of ELAIS-S1 galaxies
    D'Elia, V
    Branchini, E
    La Franca, F
    Baccetti, V
    Matute, I
    Pozzi, F
    Gruppioni, C
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2005, 359 (03) : 1077 - 1082
  • [15] Forecasts on neutrino mass constraints from the redshift-space two-point correlation function
    Petracca, F.
    Marulli, F.
    Moscardini, L.
    Cimatti, A.
    Carbone, C.
    Angulo, R. E.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 462 (04) : 4208 - 4219
  • [16] Euclid: Fast two-point correlation function covariance through linear construction
    Keihanen, E.
    Lindholm, V
    Monaco, P.
    Blot, L.
    Carbone, C.
    Kiiveri, K.
    Sanchez, A. G.
    Viitanen, A.
    Valiviita, J.
    Amara, A.
    Auricchio, N.
    Baldi, M.
    Bonino, D.
    Branchini, E.
    Brescia, M.
    Brinchmann, J.
    Camera, S.
    Capobianco, V
    Carretero, J.
    Castellano, M.
    Cavuoti, S.
    Cimatti, A.
    Cledassou, R.
    Congedo, G.
    Conversi, L.
    Copin, Y.
    Corcione, L.
    Cropper, M.
    Da Silva, A.
    Degaudenzi, H.
    Douspis, M.
    Dubath, F.
    Duncan, C. A. J.
    Dupac, X.
    Dusini, S.
    Ealet, A.
    Farrens, S.
    Ferriol, S.
    Frailis, M.
    Franceschi, E.
    Fumana, M.
    Gillis, B.
    Giocoli, C.
    Grazian, A.
    Grupp, F.
    Guzzo, L.
    Haugan, S. V. H.
    Hoekstra, H.
    Holmes, W.
    Hormuth, F.
    ASTRONOMY & ASTROPHYSICS, 2022, 666
  • [17] PARTIALLY SOLVED DIFFERENTIAL SYSTEMS WITH TWO-POINT NON-LINEAR BOUNDARY CONDITIONS
    Ronto, A.
    Ronto, M.
    Varga, I.
    MISKOLC MATHEMATICAL NOTES, 2017, 18 (02) : 1001 - 1014
  • [18] Singular non-linear two-point boundary value problems: Existence and uniqueness
    Ford, William F.
    Pennline, James A.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (3-4) : 1059 - 1072
  • [19] A comparison of estimators for the two-point correlation function
    Kerscher, M
    Szapudi, I
    Szalay, AS
    ASTROPHYSICAL JOURNAL, 2000, 535 (01): : L13 - L16
  • [20] Nonlinear theory of the two-point correlation function
    Gurevich, AV
    Zelnikov, MI
    Zybin, KP
    SPACE SCIENCE REVIEWS, 1995, 74 (3-4) : 471 - 474