An analog of glibenclamide selectively enhances autophagic degradation of misfolded α1-antitrypsin Z

被引:19
|
作者
Wang, Yan [1 ]
Cobanoglu, Murat C. [2 ]
Li, Jie [1 ,3 ]
Hidvegi, Tunda [1 ,3 ]
Hale, Pamela [1 ,3 ]
Ewing, Michael [1 ]
Chu, Andrew S. [1 ]
Gong, Zhenwei [1 ]
Muzumdar, Radhika [1 ]
Pak, Stephen C. [1 ,3 ]
Silverman, Gary A. [1 ,3 ]
Bahar, Ivet [2 ]
Perlmutter, David H. [1 ,3 ]
机构
[1] Univ Pittsburgh, Sch Med, Dept Pediat, Pittsburgh, PA 15261 USA
[2] Univ Pittsburgh, Sch Med, Dept Computat & Syst Biol, Pittsburgh, PA USA
[3] Washington Univ, Sch Med, Dept Pediat, St Louis, MO 63110 USA
来源
PLOS ONE | 2019年 / 14卷 / 01期
基金
美国国家卫生研究院;
关键词
C. ELEGANS MODEL;
D O I
10.1371/journal.pone.0209748
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The classical form of alpha 1-antitrypsin deficiency (ATD) is characterized by intracellular accumulation of the misfolded variant alpha 1-antitrypsin Z (ATZ) and severe liver disease in some of the affected individuals. In this study, we investigated the possibility of discovering novel therapeutic agents that would reduce ATZ accumulation by interrogating a C. elegans model of ATD with high-content genome-wide RNAi screening and computational systems pharmacology strategies. The RNAi screening was utilized to identify genes that modify the intracellular accumulation of ATZ and a novel computational pipeline was developed to make high confidence predictions on repurposable drugs. This approach identified glibenclamide (GLB), a sulfonylurea drug that has been used broadly in clinical medicine as an oral hypoglycemic agent. Here we show that GLB promotes autophagic degradation of misfolded ATZ in mammalian cell line models of ATD. Furthermore, an analog of GLB reduces hepatic ATZ accumulation and hepatic fibrosis in a mouse model in vivo without affecting blood glucose or insulin levels. These results provide support for a drug discovery strategy using simple organisms as human disease models combined with genetic and computational screening methods. They also show that GLB and/or at least one of its analogs can be immediately tested to arrest the progression of human ATD liver disease.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Small-molecule peptides inhibit Z α1-antitrypsin polymerization
    Chang, Yi-Pin
    Mahadeva, Ravi
    Chang, Wun-Shaing W.
    Lin, Sheng-Chieh
    Chu, Yen-Ho
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2009, 13 (8B) : 2304 - 2316
  • [42] Expression, purification and characterization of recombinant Z α1-Antitrypsin-The most common cause of α1-Antitrypsin deficiency
    Levina, Vita
    Dai, Weiwen
    Knaupp, Anja S.
    Kaiserman, Dion
    Pearce, Mary C.
    Cabrita, Lisa D.
    Bird, Phillip I.
    Bottomley, Stephen P.
    PROTEIN EXPRESSION AND PURIFICATION, 2009, 68 (02) : 226 - 232
  • [43] NorUDCA promotes degradation of α1-antitrypsin mutant Z protein by inducing autophagy through AMPK/ULK1 pathway
    Tang, Youcai
    Blomenkamp, Keith S.
    Fickert, Peter
    Trauner, Michael
    Teckman, Jeffrey H.
    PLOS ONE, 2018, 13 (08):
  • [44] Development of a small molecule that corrects misfolding and increases secretion of Z α1-antitrypsin
    Lomas, David A.
    Irving, James A.
    Arico-Muendel, Christopher
    Belyanskaya, Svetlana
    Brewster, Andrew
    Brown, Murray
    Chung, Chun-wa
    Dave, Hitesh
    Denis, Alexis
    Dodic, Nerina
    Dossang, Anthony
    Eddershaw, Peter
    Klimaszewska, Diana
    Haq, Imran
    Holmes, Duncan S.
    Hutchinson, Jonathan P.
    Jagger, Alistair M.
    Jakhria, Toral
    Jigorel, Emilie
    Liddle, John
    Lind, Ken
    Marciniak, Stefan J.
    Messer, Jeff
    Neu, Margaret
    Olszewski, Allison
    Ordonez, Adriana
    Ronzoni, Riccardo
    Rowedder, James
    Ruediger, Martin
    Skinner, Steve
    Smith, Kathrine J.
    Terry, Rebecca
    Trottet, Lionel
    Uings, Iain
    Wilson, Steve
    Zhu, Zhengrong
    Pearce, Andrew C.
    EMBO MOLECULAR MEDICINE, 2021, 13 (03)
  • [45] Structural Change in β-Sheet A of Z α1-Antitrypsin Is Responsible for Accelerated Polymerization and Disease
    Knaupp, Anja S.
    Bottomley, Stephen P.
    JOURNAL OF MOLECULAR BIOLOGY, 2011, 413 (04) : 888 - 898
  • [46] A transgenic zebrafish model of hepatocyte function in human Z α1-antitrypsin deficiency
    Yip, Evelyn
    Giousoh, Aminah
    Fung, Connie
    Wilding, Brendan
    Prakash, Monica D.
    Williams, Caitlin
    Verkade, Heather
    Bryson-Richardson, Robert J.
    Bird, Phillip I.
    BIOLOGICAL CHEMISTRY, 2019, 400 (12) : 1603 - 1616
  • [47] Alpha 1-Antitrypsin (AAT) Enhances the Function of Pancreatic Beta-Cells
    Zhan, Bin
    Wasserfall, Clive
    Atkinson, Mark
    Song, Sihong
    DIABETES, 2009, 58 : A416 - A416
  • [48] Heterozygosity of the Alpha 1-Antitrypsin Pi*Z Allele and Risk of Liver Disease
    Hakim, Aaron
    Moll, Matthew
    Qiao, Dandi
    Liu, Jiangyuan
    Lasky-Su, Jessica A.
    Silverman, Edwin K.
    Vilarinho, Silvia
    Jiang, Z. Gordon
    Hobbs, Brian D.
    Cho, Michael H.
    HEPATOLOGY COMMUNICATIONS, 2021, 5 (08) : 1348 - 1361
  • [49] α1-antitrypsin deficiency in Europe:: geographical distribution of Pi types S and Z
    Hutchison, DCS
    RESPIRATORY MEDICINE, 1998, 92 (03) : 367 - 377
  • [50] POLYMERS OF Z α1-ANTITRYPSIN ARE ASSOCIATED WITH PULMONARY INFECTION POST LUNG TRANSPLANTATION
    Santhanakrishnan, K.
    Alam, S.
    Parmar, J.
    Mahadeva, R.
    THORAX, 2011, 66 : A27 - A27