Cost-benefit quantification of ISHM in aerospace systems

被引:0
|
作者
Hoyle, Christopher [1 ]
Mehr, Alexander F. [1 ]
Tumer, Irern Y. [1 ]
Chen, Wei [1 ]
机构
[1] Northwestern Univ, Evanston, IL 60208 USA
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Integrated Systems Health Management (ISHM) is an evolving technology used to detect, assess, and isolate faults in complex aerospace systems to improve safety. At the conceptual design level, system-level engineers must make decisions regarding the inclusion of ISHM and the extent and type of the sensing technologies used in various subsystems. In this paper, we propose a Cost-Benefit Analysis approach to initiate the ISHM design process. The key to this analysis is the formulation of an objective function that explicitly quantifies the cost-benefit factors involved with using ISHM technology in various subsystems. Ultimately, to determine the best ISHM system configuration, an objective is formulated, referred to as Profit, which is expressed as the product of system Availability (A) and Revenue per unit Availability (R), minus the sum of Cost of Detection (C-D) and Cost of Risk (C-R). Cost of Detection includes the cost of periodic inspection/maintenance and the cost of ISHM; Cost of Risk quantifies risk in financial terms as a function of the consequential cost of a fault and the probabilities of occurrence and detection. Increasing the ISHM footprint will generally lower Cost of Risk while raising Cost of Detection, while Availability will increase or decrease based upon the balance of the reliability and detectability of the sensors added, versus their ability to reduce total maintenance time. The analysis is conducted at the system functional level, with ISHM allocated to functional blocks in the optimization analysis. The proposed method is demonstrated using a simplified aerospace system design problem resulting in a configuration of sensors which optimizes the cost-benefit of the ISHM system for the given input parameters. In this problem, profit was increased by 11%, inspection interval increased by a factor of 1.5, and cost of risk reduced by a factor of 2.4 over a system with no ISHM.
引用
收藏
页码:975 / 984
页数:10
相关论文
共 50 条
  • [1] On quantifying cost-benefit of ISHM in aerospace systems
    Hoyle, C.
    Mehr, A.
    Tumer, I.
    Chen, W.
    [J]. 2007 IEEE AEROSPACE CONFERENCE, VOLS 1-9, 2007, : 4209 - +
  • [2] COST-BENEFIT METHODOLOGY FOR OFFICE SYSTEMS
    SASSONE, PG
    [J]. ACM TRANSACTIONS ON OFFICE INFORMATION SYSTEMS, 1987, 5 (03): : 273 - 289
  • [3] COST-BENEFIT
    RUSSELL, JGB
    [J]. BRITISH JOURNAL OF RADIOLOGY, 1987, 60 (715): : 731 - 731
  • [4] AVIONICS SYSTEMS FACE COST-BENEFIT HURDLES
    HUGHES, D
    [J]. AVIATION WEEK & SPACE TECHNOLOGY, 1994, 141 (12): : 43 - 44
  • [5] Cost-benefit analysis of environmental management systems
    Kern, S
    [J]. PAPIER, 1999, 53 (03): : 152 - 153
  • [6] COST-BENEFIT ANALYSIS OF URBAN INFORMATION SYSTEMS
    LEYLAND, G
    [J]. EKISTICS, 1970, 30 (176): : 77 - 80
  • [7] Cost-Benefit Analysis of Crash Cushion Systems
    Schrum, Kevin D.
    De Albuquerque, Francisco D. B.
    Sicking, Dean L.
    Lechtenberg, Karla A.
    Faller, Ronald K.
    Reid, John D.
    [J]. JOURNAL OF TRANSPORTATION SAFETY & SECURITY, 2015, 7 (01) : 1 - 19
  • [8] COST-BENEFIT QUANTIFICATION OF WATER FLUORIDATION - SIMULATION FOR QUEBEC (CANADA)
    TESSIER, G
    BRODEUR, JM
    CONTANDRIOPOULOS, AP
    [J]. JOURNAL OF DENTAL RESEARCH, 1984, 63 : 197 - 197
  • [9] Uncertainty quantification for combined building performance and cost-benefit analyses
    Burhenne, Sebastian
    Tsvetkova, Olga
    Jacob, Dirk
    Henze, Gregor P.
    Wagner, Andreas
    [J]. BUILDING AND ENVIRONMENT, 2013, 62 : 143 - 154
  • [10] Attacking recommender systems: A cost-benefit analysis
    Hurley, Neil J.
    O'Mahony, Michael P.
    Silvestre, Guenole C. M.
    [J]. IEEE INTELLIGENT SYSTEMS, 2007, 22 (03) : 64 - 68