Network traffic analysis using singular value decomposition and multiscale transforms

被引:16
|
作者
Sastry, Challa S. [1 ]
Rawat, Sanjay
Pujari, Arun K.
Gulati, V. P.
机构
[1] Univ Hyderabad, Artificial Intelligence Lab, Dept Comp & Informat Syst, Hyderabad 500046, Andhra Pradesh, India
[2] TCS, Hyderabad, Andhra Pradesh, India
关键词
traffic analysis; anomaly detection; wavelets; multiscale analysis; singular value decomposition; self-similarity; energy-scale plot;
D O I
10.1016/j.ins.2006.07.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The present work integrates the multiscale transform provided by the wavelets and singular value decomposition (SVD) for the detection of anomaly in self-similar network data. The algorithm proposed in this paper uses the properties of singular value decomposition (SVD) of a matrix whose elements are local energies of wavelet coefficients at different scales. Unlike existing techniques, our method determines both the presence (i.e., the time intervals in which anomaly occurs) and the nature of anomaly (i.e., anomaly of bursty type, long or short duration, etc.) in network data. It uses the diagonal, left and right singular matrices obtained in SVD to determine the number of scales of self-similarity, location and scales of anomaly in data, respectively. Our simulation work on different data sets demonstrates that the method performs better than the existing anomaly detection methods proposed for self-similar data. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:5275 / 5291
页数:17
相关论文
共 50 条
  • [31] Signal modeling using Singular Value Decomposition
    Baig, Sobia
    Fazal-ur-Rehman
    [J]. ADVANCES IN COMPUTER, INFORMATION, AND SYSTEMS SCIENCES AND ENGINEERING, 2006, : 31 - +
  • [32] Image Enhancement Using Singular Value Decomposition
    Sugamya, Katta
    Pabboju, Suresh
    VinayaBabu, A.
    [J]. 2016 INTERNATIONAL CONFERENCE ON RESEARCH ADVANCES IN INTEGRATED NAVIGATION SYSTEMS (RAINS), 2016,
  • [33] Image Reconstruction Using Singular Value Decomposition
    Karim, Samsul Ariffin Abdul
    Mustafa, Muhammad Izzatullah Mohd
    Karim, Bakri Abdul
    Hasan, Mohammad Khatim
    Sulaiman, Jumat
    Ismail, Mohd Tahir
    [J]. PROCEEDINGS OF THE 20TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM20): RESEARCH IN MATHEMATICAL SCIENCES: A CATALYST FOR CREATIVITY AND INNOVATION, PTS A AND B, 2013, 1522 : 269 - 274
  • [34] Compressive Sensing Using Singular Value Decomposition
    Xu, Lei
    Liang, Qilian
    [J]. WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, 2010, 6221 : 338 - 342
  • [35] Video summarization using singular value decomposition
    Gong, YH
    Liu, X
    [J]. IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, VOL II, 2000, : 174 - 180
  • [36] Singular Value Decomposition on GPU using CUDA
    Lahabar, Sheetal
    Narayanan, P. J.
    [J]. 2009 IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL & DISTRIBUTED PROCESSING, VOLS 1-5, 2009, : 840 - 849
  • [37] ANALYSIS OF INTERACTION DIRECTION WITH THE SINGULAR VALUE DECOMPOSITION
    GROSDIDIER, P
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 1990, 14 (06) : 687 - 689
  • [38] Tensor Decomposition of Biometric Data using Singular Value Decomposition
    Mistry, Nirav
    Tanwar, Sudeep
    Tyagi, Sudhanshu
    Singh, Pradeep Kr
    [J]. 2018 FIFTH INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED AND GRID COMPUTING (IEEE PDGC), 2018, : 833 - 837
  • [39] Alignment and correspondence using singular value decomposition
    Luo, B
    Hancock, ER
    [J]. ADVANCES IN PATTERN RECOGNITION, 2000, 1876 : 226 - 235
  • [40] Sensitivity analysis for the generalized singular value decomposition
    Chen, Xiao Shan
    Li, Wen
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2013, 20 (01) : 138 - 149