Network traffic analysis using singular value decomposition and multiscale transforms

被引:16
|
作者
Sastry, Challa S. [1 ]
Rawat, Sanjay
Pujari, Arun K.
Gulati, V. P.
机构
[1] Univ Hyderabad, Artificial Intelligence Lab, Dept Comp & Informat Syst, Hyderabad 500046, Andhra Pradesh, India
[2] TCS, Hyderabad, Andhra Pradesh, India
关键词
traffic analysis; anomaly detection; wavelets; multiscale analysis; singular value decomposition; self-similarity; energy-scale plot;
D O I
10.1016/j.ins.2006.07.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The present work integrates the multiscale transform provided by the wavelets and singular value decomposition (SVD) for the detection of anomaly in self-similar network data. The algorithm proposed in this paper uses the properties of singular value decomposition (SVD) of a matrix whose elements are local energies of wavelet coefficients at different scales. Unlike existing techniques, our method determines both the presence (i.e., the time intervals in which anomaly occurs) and the nature of anomaly (i.e., anomaly of bursty type, long or short duration, etc.) in network data. It uses the diagonal, left and right singular matrices obtained in SVD to determine the number of scales of self-similarity, location and scales of anomaly in data, respectively. Our simulation work on different data sets demonstrates that the method performs better than the existing anomaly detection methods proposed for self-similar data. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:5275 / 5291
页数:17
相关论文
共 50 条
  • [1] Texture Retrieval Based on Nonlocal Singular Value Decomposition and Multiscale Transforms
    Zhang, J. W.
    Liu, B.
    [J]. PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON ELECTRICAL, AUTOMATION AND MECHANICAL ENGINEERING (EAME 2015), 2015, 13 : 650 - 653
  • [2] Network analysis using visualization and singular value decomposition
    Carbonaro, M
    [J]. PROCEEDINGS OF THE TWENTIETH ANNUAL CONFERENCE OF THE COGNITIVE SCIENCE SOCIETY, 1998, : 1207 - 1207
  • [3] Multiscale DEM generation on basis of singular value decomposition
    Zhang Caixian
    He Junli
    Hou Wenguang
    [J]. MIPPR 2019: REMOTE SENSING IMAGE PROCESSING, GEOGRAPHIC INFORMATION SYSTEMS, AND OTHER APPLICATIONS, 2020, 11432
  • [4] Denoising Pathological Multilead Electrocardiogram Signals using Multiscale Singular Value Decomposition
    Sharma, L. N.
    [J]. 2014 12TH INTERNATIONAL CONFERENCE ON ICT AND KNOWLEDGE ENGINEERING (ICT AND KNOWLEDGE ENGINEERING), 2014, : 1 - 5
  • [5] PRINCIPAL COMPONENT TRANSFORMS OF TRIAXIAL RECORDINGS BY SINGULAR VALUE DECOMPOSITION
    JACKSON, GM
    MASON, IM
    GREENHALGH, SA
    [J]. GEOPHYSICS, 1991, 56 (04) : 528 - 533
  • [6] TRUST MODEL FOR SOCIAL NETWORK USING SINGULAR VALUE DECOMPOSITION
    Ntwiga, Davis Bundi
    Weke, Patrick
    Kirumbu, Michael Kiura
    [J]. INTERDISCIPLINARY DESCRIPTION OF COMPLEX SYSTEMS, 2016, 14 (03) : 296 - 302
  • [7] NEURAL NETWORK FOR SINGULAR VALUE DECOMPOSITION
    CICHOCKI, A
    [J]. ELECTRONICS LETTERS, 1992, 28 (08) : 784 - 786
  • [8] ANALYSIS OF EXPERIMENTAL CURVES USING SINGULAR VALUE DECOMPOSITION
    TOMINAGA, S
    [J]. IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1981, 29 (03): : 429 - 433
  • [9] Analysis of channeled spectropolarimetry using singular value decomposition
    Sabatke, DS
    Locke, AM
    Descour, MR
    Dereniak, EL
    Garcia, JP
    Hamilton, TK
    McMillan, RW
    [J]. POLARIZATION ANALYSIS, MEASUREMENT, AND REMOTE SENSING IV, 2002, 4481 : 73 - 80
  • [10] PARAMETER ESTIMATION AND ACCURACY ANALYSIS OF THE FREE GEODETIC NETWORK ADJUSTMENT USING SINGULAR VALUE DECOMPOSITION
    Bozic, Branko
    Ristic, Kornelija
    Pejic, Marko
    [J]. TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2014, 21 (02): : 451 - 456