A Bayesian approach for the zero-inflated cure model: an application in a Brazilian invasive cervical cancer database

被引:1
|
作者
de Souza, Hayala Cristina Cavenague [1 ]
Louzada, Francisco [2 ]
Ramos, Pedro Luiz [2 ]
de Oliveira Junior, Mauro Ribeiro [3 ,4 ]
Perdona, Gleici da Silva Castro [1 ]
机构
[1] Univ Sao Paulo, Ribeirao Preto Sch Med, Dept Social Med, Av Bandeirantes 3900, BR-14049900 Ribeirao Preto, SP, Brazil
[2] Univ Sao Paulo, Inst Math Sci & Comp, Sao Carlos, Brazil
[3] UNIEURO Ctr Univ, Brasilia, DF, Brazil
[4] Caixa Econ Fed, Dept Specialized Risks, Brasilia, DF, Brazil
基金
巴西圣保罗研究基金会;
关键词
Bayesian estimation; cure rate; survival analysis; Weibull distribution; zero-inflation; REGRESSION-MODELS; SURVIVAL-DATA;
D O I
10.1080/02664763.2021.1933923
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper aims to discuss the Bayesian estimation approach for the zero-inflated cure class of models, which extends the standard cure model by accommodating zero-inflated data in the survival analysis context. A comprehensive simulation study is carried out to assess the performance of the estimation procedure. A new estimation methodology is illustrated using a real dataset related to women diagnosed with invasive cervical cancer in Brazil.
引用
收藏
页码:3178 / 3194
页数:17
相关论文
共 50 条
  • [41] A Spatial-Filtering Zero-Inflated Approach to the Estimation of the Gravity Model of Trade
    Metulini, Rodolfo
    Patuelli, Roberto
    Griffith, Daniel A.
    [J]. ECONOMETRICS, 2018, 6 (01):
  • [42] Bayesian Analysis of Korean Alcohol Consumption Data Using a Zero-Inflated Ordered Probit Model
    Oh, Man-Suk
    Oh, Hyun Tak
    Park, Semi
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2012, 25 (02) : 363 - 376
  • [43] Bayesian modelling of zero-inflated recurrent events and dependent termination with compound Poisson frailty model
    Rahmati, Maryam
    Mahmoudi, Mahmood
    Mohammad, Kazem
    Mikaeli, Javad
    Zeraati, Hojjat
    [J]. STAT, 2020, 9 (01):
  • [44] A Bayesian zero-inflated Dirichlet-multinomial regression model for multivariate compositional count data
    Koslovsky, Matthew D. D.
    [J]. BIOMETRICS, 2023, 79 (04) : 3239 - 3251
  • [45] A Bayesian Approach for Zero-Inflated Count Regression Models by Using the Reversible Jump Markov Chain Monte Carlo Method and an Application
    Ozmen, Ilknur
    Demirhan, Haydar
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2010, 39 (12) : 2109 - 2127
  • [46] The Log-Normal zero-inflated cure regression model for labor time in an African obstetric population
    Cavenague de Souza, Hayala Cristina
    Louzada, Francisco
    de Oliveira, Mauro Ribeiro
    Fawole, Bukola
    Akintan, Adesina
    Oyeneyin, Lawal
    Sanni, Wilfred
    Castro Perdona, Gleici da Silva
    [J]. JOURNAL OF APPLIED STATISTICS, 2022, 49 (09) : 2416 - 2429
  • [47] Bayesian Spatial Joint Model for Disease Mapping of Zero-Inflated Data with R-INLA: A Simulation Study and an Application to Male Breast Cancer in Iran
    Asmarian, Naeimehossadat
    Ayatollahi, Seyyed Mohammad Taghi
    Sharafi, Zahra
    Zare, Najaf
    [J]. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2019, 16 (22)
  • [48] A Bayesian zero-inflated negative binomial regression model based on Polya-Gamma latent variables with an application to pharmaceutical data
    Seo, Gi Tae
    Hwang, Beom Seuk
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2022, 35 (02) : 311 - 325
  • [49] Identification of microbial interaction network: zero-inflated latent Ising model based approach
    Zhou, Jie
    Viles, Weston D.
    Lu, Boran
    Li, Zhigang
    Madan, Juliette C.
    Karagas, Margaret R.
    Gui, Jiang
    Hoen, Anne G.
    [J]. BIODATA MINING, 2020, 13 (01)
  • [50] Weekly heat wave death prediction model using zero-inflated regression approach
    Do-Woo Kim
    Ravinesh C. Deo
    Sang-Jin Park
    Jong-Seol Lee
    Woo-Seop Lee
    [J]. Theoretical and Applied Climatology, 2019, 137 : 823 - 838