Efficient multilevel brain tumor segmentation with integrated Bayesian model classification

被引:276
|
作者
Corso, Jason J. [1 ]
Sharon, Eitan [2 ]
Dube, Shishir [3 ]
El-Saden, Suzie [4 ]
Sinha, Usha [4 ]
Yuille, Alan [5 ,6 ]
机构
[1] Univ Calif Los Angeles, Dept Radiol Sci, Los Angeles, CA 90095 USA
[2] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
[3] Univ Calif Los Angeles, Dept Biomed Engn, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Dept Radiol Sci, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USA
[6] Univ Calif Los Angeles, Dept Psychol, Los Angeles, CA 90095 USA
关键词
Bayesian affinity; brain tumor; glioblastoma multiforme; multilevel segmentation; normalized cuts;
D O I
10.1109/TMI.2007.912817
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a new method for automatic segmentation of heterogeneous image data that takes a step toward bridging the gap between bottom-up affinity-based segmentation methods and top-down generative model based approaches. The main contribution of the paper is a Bayesian formulation for incorporating soft model assignments into the calculation of affinities, which are conventionally model free. We integrate the resulting model-aware affinities into the multilevel segmentation by weighted aggregation algorithm, and apply the technique to the task of detecting and segmenting brain tumor and edema in multichannel magnetic resonance (MR) volumes. The computationally efficient method runs orders of magnitude faster than current state-of-the-art techniques giving comparable or improved results. Our quantitative results indicate the benefit of incorporating model-aware affinities into the segmentation process for the difficult case of glioblastoma multi-forme brain tumor.
引用
收藏
页码:629 / 640
页数:12
相关论文
共 50 条
  • [41] Effective and efficient multitask learning for brain tumor segmentation
    Cheng, Guohua
    Cheng, Jingliang
    Luo, Mengyan
    He, Linyang
    Tian, Yan
    Wang, Ruili
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2020, 17 (06) : 1951 - 1960
  • [42] Hybrid clustering algorithm for an efficient brain tumor segmentation
    Maheswari, K.
    Balamurugan, A.
    Malathi, P.
    Ramkumar, S.
    MATERIALS TODAY-PROCEEDINGS, 2021, 37 : 3002 - 3006
  • [43] Efficient nnU-Net for Brain Tumor Segmentation
    Magadza, Tirivangani
    Viriri, Serestina
    IEEE ACCESS, 2023, 11 : 126386 - 126397
  • [44] Effective and efficient multitask learning for brain tumor segmentation
    Guohua Cheng
    Jingliang Cheng
    Mengyan Luo
    Linyang He
    Yan Tian
    Ruili Wang
    Journal of Real-Time Image Processing, 2020, 17 : 1951 - 1960
  • [45] Bayesian Personalization of Brain Tumor Growth Model
    Le, Matthieu
    Delingette, Herve
    Kalpathy-Cramer, Jayashree
    Gerstner, Elizabeth R.
    Batchelor, Tracy
    Unkelbach, Jan
    Ayache, Nicholas
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2015, PT II, 2015, 9350 : 424 - 432
  • [46] An efficient method for MRI brain tumor tissue segmentation and classification using an optimized support vector machine
    Kollem, Sreedhar
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (26) : 68487 - 68519
  • [47] Efficient segmentation and classification of the tumor using improved encoder-decoder architecture in brain MRI images
    Ingle, Archana
    Sankhe, Manoj
    Roja, Mani
    Patkar, Deepak
    INTERNATIONAL JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING SYSTEMS, 2022, 13 (08) : 643 - 651
  • [48] A Bayesian Neo-Normal Mixture Model (Nenomimo) for MRI-Based Brain Tumor Segmentation
    Pravitasari, Anindya Apriliyanti
    Iriawan, Nur
    Fithriasari, Kartika
    Purnami, Santi Wulan
    Irhamah
    Ferriastuti, Widiana
    APPLIED SCIENCES-BASEL, 2020, 10 (14):
  • [49] Bayesian Classification Using DCT Features for Brain Tumor Detection
    Qurat-ul Ain
    Mehmood, Irfan
    Naqi, Syed M.
    Jaffar, M. Arfan
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT I, 2010, 6276 : 340 - +
  • [50] Model-based brain and tumor segmentation
    Moon, N
    Bullitt, E
    van Leemput, K
    Gerig, G
    16TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL I, PROCEEDINGS, 2002, : 528 - 531