On the Fractional Difference Equations of Order (2,q)

被引:25
|
作者
Cheng, Jin-Fa [2 ]
Chu, Yu-Ming [1 ]
机构
[1] Huzhou Teachers Coll, Dept Math, Huzhou 313000, Peoples R China
[2] Xiamen Univ, Dept Math, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1155/2011/497259
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a kind of new definition of fractional difference, fractional summation, and fractional difference equations and gives methods for explicitly solving fractional difference equations of order (2,q).
引用
收藏
页数:16
相关论文
共 50 条
  • [31] THE PONTRYAGIN MAXIMUM PRINCIPLE FOR NONLINEAR FRACTIONAL ORDER DIFFERENCE EQUATIONS
    Aliyeva, S. T.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-UPRAVLENIE VYCHISLITELNAJA TEHNIKA I INFORMATIKA-TOMSK STATE UNIVERSITY JOURNAL OF CONTROL AND COMPUTER SCIENCE, 2021, (54): : 4 - 11
  • [32] On the oscillation of higher order fractional difference equations with mixed nonlinearities
    Abdalla, Bahaaeldin
    Alzabut, Jehad
    Abdeljawad, Thabet
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (02): : 207 - 217
  • [33] On Solvability of Fractional (p,q)-Difference Equations with (p,q)-Difference Anti-Periodic Boundary Conditions
    Agarwal, Ravi P.
    Al-Hutami, Hana
    Ahmad, Bashir
    MATHEMATICS, 2022, 10 (23)
  • [34] Factorization Method and Second Order q-and (q, h)-difference Equations
    Dobrogowska, Alina
    Jakimowicz, Grzegorz
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [35] q-Karamata functions and second order q-difference equations
    Rehak, Pavel
    Vitovec, Jiri
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2011, (24) : 1 - 20
  • [36] A method for solving differential equations of q-fractional order
    Koca, Ilknur
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 266 : 1 - 5
  • [37] Asymptotic behavior of solutions of fractional nabla q-difference equations
    Jia, Baoguo
    Erbe, Lynn
    Peterson, Allan
    GEORGIAN MATHEMATICAL JOURNAL, 2019, 26 (01) : 21 - 28
  • [38] The Cauchy problems for q-difference equations with the Caputo fractional derivatives
    Shaimardan, S.
    Tokmagambetov, N. S.
    Temirkhanova, A. M.
    JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2022, 113 (01): : 43 - 57
  • [39] Stability analysis for a class of nabla (q, h)-fractional difference equations
    Liu, Xiang
    Jia, Baoguo
    Erbe, Lynn
    Peterson, Allan
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (02) : 664 - 687
  • [40] Boundary value problems of fractional q-difference Schroinger equations
    Li, Xinhui
    Han, Zhenlai
    Li, Xicheng
    APPLIED MATHEMATICS LETTERS, 2015, 46 : 100 - 105