Characterization of iron nitrides prepared by spark erosion, plasma nitriding, and plasma immersion ion implantation

被引:27
|
作者
Jirásková, Y
Havlícek, S
Schneeweiss, O
Perina, V
Blawert, C
机构
[1] Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic
[2] Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Prague, Czech Republic
[3] Zentrum Funkt Werkstoffe gGmbH Clausthal, D-38678 Clausthal Zellerfeld, Germany
关键词
Mossbauer phase analysis; hyperfine parameters; iron nitrides; heat treatment; phase transformations;
D O I
10.1016/S0304-8853(01)00426-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The effect of the nitrogen uptake in alpha -iron upon spark erosion in gaseous and liquid ammonia, plasma nitriding, and plasma immersion ion implantation is studied. The resulting phases and hyperfine parameters, measured by the Mossbauer spectroscopy, are discussed from the point of view of initial conditions of their preparation and subsequent heat and/or mechanical treatment. Spark erosion in the ammonia gas produces fine particles with the dominating ferromagnetic alpha -Fe phase (50%). The 20% of specimen volume form alpha ' -Fe and alpha " -Fe(16)N(2) phases. The last 30% occupy the gamma ' -Fe(4)N, ferro- and paramagnetic epsilon phases, and gamma -Fe(N). Nitriding in the liquid ammonia allows to incorporate the higher content of nitrogen into alpha -iron particles which results in the formation of paramagnetic epsilon(zeta)-Fe(2)N phase. This phase also dominates the surface of alpha -iron specimen implanted by nitrogen using plasma immersion ion implantation at 300 degreesC/3 h, where high uptake of nitrogen (approx. 30 at %) is reached. Plasma nitriding at 510 degreesC results in the formation of gamma ' -Fe(4)N phase. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:477 / 488
页数:12
相关论文
共 50 条
  • [41] Electrical characterization of silicon nitride produced by plasma immersion ion implantation
    Chen, SM
    Shannon, JM
    Gwilliam, RM
    Sealy, BJ
    SURFACE & COATINGS TECHNOLOGY, 1997, 93 (2-3): : 269 - 273
  • [42] Ion energy distribution in plasma immersion ion implantation
    Mandl, S
    Brutscher, J
    Gunzel, R
    Moller, W
    SURFACE & COATINGS TECHNOLOGY, 1997, 93 (2-3): : 234 - 237
  • [43] EXACT ION ENERGY IN PLASMA IMMERSION ION IMPLANTATION
    Sakudo, N.
    Ikenaga, N.
    Matsui, K.
    Sakumoto, N.
    2015 42ND IEEE INTERNATIONAL CONFERENCE ON PLASMA SCIENCES (ICOPS), 2015,
  • [44] EFFECTS OF ION-IMPLANTATION ON NITRIDING METAL BY THE PLASMA SOURCE NITRIDING
    NUNOGAKI, M
    SUEZAWA, H
    KURATOMI, Y
    MIYAZAKI, K
    VACUUM, 1989, 39 (2-4) : 281 - 284
  • [45] Semiconductor processing by plasma immersion ion implantation
    Ensinger, W
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1998, 253 (1-2): : 258 - 268
  • [46] Plasma immersion ion implantation for silicon processing
    Yankov, RA
    Mändl, S
    ANNALEN DER PHYSIK, 2001, 10 (04) : 279 - 298
  • [47] Plasma immersion ion implantation with dielectric substrates
    Linder, BP
    Cheung, NW
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 1996, 24 (06) : 1383 - 1388
  • [48] Modification of metals by plasma immersion ion implantation
    Maendl, Stephan
    Manova, Darina
    SURFACE & COATINGS TECHNOLOGY, 2019, 365 : 83 - 93
  • [49] Sheath dynamics in plasma immersion ion implantation
    Brutscher, J
    Gunzel, R
    Moller, W
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 1996, 5 (01): : 54 - 60
  • [50] Plasma immersion ion implantation for silicon processing
    Yankov, Rossen A.
    Mändl, Stephan
    Annalen der Physik (Leipzig), 2001, 10 (04): : 279 - 298