Non-Bipartite K-Common Graphs

被引:4
|
作者
Kral, Daniel [1 ,2 ,3 ]
Noel, Jonathan A. [2 ,4 ,5 ,6 ]
Norin, Sergey [7 ]
Volec, Jan [1 ,8 ]
Wei, Fan [9 ,10 ]
机构
[1] Masaryk Univ, Fac Informat, Botanicka 68A, Brno 60200, Czech Republic
[2] Univ Warwick, Math Inst, DIMAP, Coventry CV4 7AL, W Midlands, England
[3] Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, W Midlands, England
[4] Univ Victoria, Dept Math & Stat, David Turpin Bldg A425,3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada
[5] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
[6] Univ Warwick, DIMAP, Coventry CV4 7AL, W Midlands, England
[7] McGill Univ, Dept Math & Stat, Montreal, PQ, Canada
[8] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Math, Trojanova 13, Prague 12000, Czech Republic
[9] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[10] Inst Adv Study, Sch Math, Princeton, NJ USA
基金
加拿大自然科学与工程研究理事会; 欧洲研究理事会;
关键词
05C55; 05C35; MULTIPLICITIES; CONJECTURE;
D O I
10.1007/s00493-020-4499-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph H is k-common if the number of monochromatic copies of H in a k-edge-coloring of K-n is asymptotically minimized by a random coloring. For every k, we construct a connected non-bipartite k-common graph. This resolves a problem raised by Jagger, Stovicek and Thomason [20]. We also show that a graph H is k-common for every k if and only if H is Sidorenko and that H is locally k-common for every k if and only if H is locally Sidorenko.
引用
收藏
页码:87 / 114
页数:28
相关论文
共 50 条
  • [21] Ordering connected non-bipartite graphs by the least Q-eigenvalue
    Zhang, Rong
    Guo, Shu-Guang
    Yu, Guanglong
    ARS COMBINATORIA, 2018, 141 : 3 - 20
  • [22] Non-bipartite distance-regular graphs with a small smallest eigenvalue
    Qiao, Zhi
    Jing, Yifan
    Koolen, Jack
    ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (02):
  • [23] Edge maximal non-bipartite Hamiltonian graphs without theta graphs of order 7
    Bataineh, M. S.
    Al-Rhayyel, A. A.
    Mustafa, Zead
    Jaradat, M. M. M.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, (42): : 413 - 427
  • [24] On symmetric spectra of Hermitian adjacency matrices for non-bipartite mixed graphs
    Higuchi, Yusuke
    Kubota, Sho
    Segawa, Etsuo
    DISCRETE MATHEMATICS, 2024, 347 (05)
  • [25] Non-bipartite graphs of fixed order and size that minimize the least eigenvalue
    Jovovic, Ivana
    Koledin, Tamara
    Stanic, Zoran
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 477 : 148 - 164
  • [26] The least eigenvalues of the signless Laplacian of non-bipartite graphs with pendant vertices
    Fan, Yi-Zheng
    Wang, Yi
    Guo, Huan
    DISCRETE MATHEMATICS, 2013, 313 (07) : 903 - 909
  • [27] The non-bipartite graphs with all but two eigenvalues in [-1,1]
    de Lima, L. S.
    Mohammadian, A.
    Oliveira, C. S.
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (03): : 526 - 544
  • [28] Non-bipartite chromatic factors
    Morgan, Kerri
    Farr, Graham
    DISCRETE MATHEMATICS, 2012, 312 (06) : 1166 - 1170
  • [29] A Spectral Extremal Problem on Non-Bipartite Triangle-Free Graphs
    Li, Yongtao
    Feng, Lihua
    Peng, Yuejian
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (01):
  • [30] Turán numbers for non-bipartite graphs and applications to spectral extremal problems
    Fang, Longfei
    Tait, Michael
    Zhai, Mingqing
    arXiv,