Non-Bipartite K-Common Graphs

被引:4
|
作者
Kral, Daniel [1 ,2 ,3 ]
Noel, Jonathan A. [2 ,4 ,5 ,6 ]
Norin, Sergey [7 ]
Volec, Jan [1 ,8 ]
Wei, Fan [9 ,10 ]
机构
[1] Masaryk Univ, Fac Informat, Botanicka 68A, Brno 60200, Czech Republic
[2] Univ Warwick, Math Inst, DIMAP, Coventry CV4 7AL, W Midlands, England
[3] Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, W Midlands, England
[4] Univ Victoria, Dept Math & Stat, David Turpin Bldg A425,3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada
[5] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
[6] Univ Warwick, DIMAP, Coventry CV4 7AL, W Midlands, England
[7] McGill Univ, Dept Math & Stat, Montreal, PQ, Canada
[8] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Math, Trojanova 13, Prague 12000, Czech Republic
[9] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[10] Inst Adv Study, Sch Math, Princeton, NJ USA
基金
加拿大自然科学与工程研究理事会; 欧洲研究理事会;
关键词
05C55; 05C35; MULTIPLICITIES; CONJECTURE;
D O I
10.1007/s00493-020-4499-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph H is k-common if the number of monochromatic copies of H in a k-edge-coloring of K-n is asymptotically minimized by a random coloring. For every k, we construct a connected non-bipartite k-common graph. This resolves a problem raised by Jagger, Stovicek and Thomason [20]. We also show that a graph H is k-common for every k if and only if H is Sidorenko and that H is locally k-common for every k if and only if H is locally Sidorenko.
引用
收藏
页码:87 / 114
页数:28
相关论文
共 50 条
  • [1] Non-Bipartite K-Common Graphs
    Daniel Král’
    Jonathan A. Noel
    Sergey Norin
    Jan Volec
    Fan Wei
    Combinatorica, 2022, 42 : 87 - 114
  • [2] Surface Embedding of Non-Bipartite k-Extendable Graphs
    Hongliang Lu
    David G.L.Wang
    Annals of Applied Mathematics, 2022, 38 (01) : 1 - 24
  • [3] Removable cycles in non-bipartite graphs
    Kawarabayashi, Ken-ichi
    Reed, Bruce
    Lee, Orlando
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2009, 99 (01) : 30 - 38
  • [4] Generalized Thrackle Drawings of Non-bipartite Graphs
    Cairns, Grant
    Nikolayevsky, Yury
    DISCRETE & COMPUTATIONAL GEOMETRY, 2009, 41 (01) : 119 - 134
  • [5] Constructing cospectral graphs by unfolding non-bipartite graphs☆
    Kannan, M. Rajesh
    Pragada, Shivaramakrishna
    Wankhede, Hitesh
    DISCRETE APPLIED MATHEMATICS, 2024, 357 : 264 - 273
  • [6] Generalized Thrackle Drawings of Non-bipartite Graphs
    Grant Cairns
    Yury Nikolayevsky
    Discrete & Computational Geometry, 2009, 41 : 119 - 134
  • [7] On unicyclic non-bipartite graphs with tricyclic inverses
    Kalita, Debajit
    Sarma, Kuldeep
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (08): : 1378 - 1396
  • [8] A spectral condition for odd cycles in non-bipartite graphs
    Lin, Huiqiu
    Guo, Hangtian
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 631 : 83 - 93
  • [9] A spectral condition for the existence of a pentagon in non-bipartite graphs
    Guo, Hangtian
    Lin, Huiqiu
    Zhao, Yanhua
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 627 : 140 - 149
  • [10] Hamiltonian Cycle Properties in k-Extendable Non-bipartite Graphs with High Connectivity
    Gan, Zhiyong
    Lou, Dingjun
    Xu, Yanping
    GRAPHS AND COMBINATORICS, 2020, 36 (04) : 1043 - 1058