SEQUENTIAL CROSS ATTENTION BASED MULTI-TASK LEARNING

被引:3
|
作者
Kim, Sunkyung [1 ]
Choi, Hyesong [1 ]
Min, Dongbo [1 ]
机构
[1] Ewha Womans Univ, Dept Comp Sci & Engn, Seoul, South Korea
关键词
Multi-task learning; self-attention; cross attention; semantic segmentation; monocular depth estimation;
D O I
10.1109/ICIP46576.2022.9897871
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In multi-task learning (MTL) for visual scene understanding, it is crucial to transfer useful information between multiple tasks with minimal interferences. In this paper, we propose a novel architecture that effectively transfers informative features by applying the attention mechanism to the multi-scale features of the tasks. Since applying the attention module directly to all possible features in terms of scale and task requires a high complexity, we propose to apply the attention module sequentially for the task and scale. The cross-task attention module (CTAM) is first applied to facilitate the exchange of relevant information between the multiple task features of the same scale. The cross-scale attention module (CSAM) then aggregates useful information from feature maps at different resolutions in the same task. Also, we attempt to capture long range dependencies through the self-attention module in the feature extraction network. Extensive experiments demonstrate that our method achieves state-of-the-art performance on the NYUD-v2 and PASCAL-Context dataset. Our code is available at https://github.com/kimsunkyung/SCA-MTL
引用
下载
收藏
页码:2311 / 2315
页数:5
相关论文
共 50 条
  • [11] Multiple Relational Attention Network for Multi-task Learning
    Zhao, Jiejie
    Du, Bowen
    Sun, Leilei
    Zhuang, Fuzhen
    Lv, Weifeng
    Xiong, Hui
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 1123 - 1131
  • [12] Cross-Domain Multi-Task Learning for Sequential Sentence Classification in Research Papers
    Brack, Arthur
    Hoppe, Anett
    Buschermoehle, Pascal
    Ewerth, Ralph
    2022 ACM/IEEE JOINT CONFERENCE ON DIGITAL LIBRARIES (JCDL), 2022,
  • [13] End-to-End Multi-Task Learning with Attention
    Liu, Shikun
    Johns, Edward
    Davison, Andrew J.
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 1871 - 1880
  • [14] Enhanced task attention with adversarial learning for dynamic multi-task CNN
    School of Computer Engineering and Science, Shanghai University, China
    不详
    不详
    不详
    Pattern Recogn.,
  • [15] Enhanced task attention with adversarial learning for dynamic multi-task CNN
    Fang, Yuchun
    Xiao, Shiwei
    Zhou, Menglu
    Cai, Sirui
    Zhang, Zhaoxiang
    PATTERN RECOGNITION, 2022, 128
  • [16] Attention-based LSTM with Multi-task Learning for Distant Speech Recognition
    Zhang, Yu
    Zhang, Pengyuan
    Yan, Yonghong
    18TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2017), VOLS 1-6: SITUATED INTERACTION, 2017, : 3857 - 3861
  • [17] Strawberry Verticillium Wilt Detection Network Based on Multi-Task Learning and Attention
    Nie, Xuan
    Wang, Luyao
    Ding, Haoxuan
    Xu, Min
    IEEE ACCESS, 2019, 7 : 170003 - 170011
  • [18] Attention Mechanism Based Multi-task Learning Framework for Transportation Time Prediction
    Yang, Miaomiao
    Wu, Tao
    Mao, Jiali
    Zhu, Kaixuan
    Zhou, Aoying
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT V, PAKDD 2024, 2024, 14649 : 376 - 388
  • [19] Cross-dataset face analysis based on multi-task learning
    Caixia Zhou
    Ruicong Zhi
    Xin Hu
    Applied Intelligence, 2023, 53 : 12971 - 12984
  • [20] An ECG Classification Method Based on Multi-Task Learning and CoT Attention Mechanism
    Geng, Quancheng
    Liu, Hui
    Gao, Tianlei
    Liu, Rensong
    Chen, Chao
    Zhu, Qing
    Shu, Minglei
    HEALTHCARE, 2023, 11 (07)