Offline and online identification of hidden semi-Markov models

被引:21
|
作者
Azimi, M [1 ]
Nasiopoulos, P [1 ]
Ward, RK [1 ]
机构
[1] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6K 1Z4, Canada
关键词
expectation maximization (EM) algorithm; recursive maximum likelihood (RML); recursive prediction error (RPE); semi-Markov models;
D O I
10.1109/TSP.2005.850344
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a new signal model for hidden semi-Markov models (HSMMs). Instead of constant transition probabilities used in existing models, we use state-duration-dependant transition probabilities. We show that our modeling approach leads to easy and efficient implementation of parameter identification algorithms. Then, we present a variant of the EM algorithm and an adaptive algorithm for parameter identification of HSMMs in the offline and online cases, respectively.
引用
收藏
页码:2658 / 2663
页数:6
相关论文
共 50 条
  • [31] Filtering hidden semi-Markov chains
    Elliott, Robert
    Limnios, Nikolaos
    Swishchuk, Anatoliy
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (09) : 2007 - 2014
  • [32] Hidden semi-Markov model-based reputation management system for online to offline (020) e-commerce markets
    Xiao, Shengsheng
    Dong, Ming
    DECISION SUPPORT SYSTEMS, 2015, 77 : 87 - 99
  • [33] Application of Hidden Semi-Markov Model to 3′ splice sites identification
    Feng, XC
    Qian, MP
    Deng, MH
    Ma, XT
    Yan, XT
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2004, 31 (05) : 455 - 458
  • [34] A novel model for user clicks identification based on hidden semi-Markov
    Xu, C.
    Du, C.
    Zhao, G. F.
    Yu, S.
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2013, 36 (02) : 791 - 798
  • [35] VITERBI ALGORITHMS FOR HIDDEN SEMI-MARKOV MODELS WITH APPLICATION TO DNA ANALYSIS
    Pertsinidou, Christina-Elisavet
    Limnios, Nikolaos
    RAIRO-OPERATIONS RESEARCH, 2015, 49 (03) : 511 - 526
  • [36] Segmenting Continuous Motions with Hidden Semi-markov Models and Gaussian Processes
    Nakamura, Tomoaki
    Nagai, Takayuki
    Mochihashi, Daichi
    Kobayashi, Ichiro
    Asoh, Hideki
    Kaneko, Masahide
    FRONTIERS IN NEUROROBOTICS, 2017, 11
  • [37] MCMC implementation for Bayesian hidden semi-Markov models with illustrative applications
    Economou, Theodoros
    Bailey, Trevor C.
    Kapelan, Zoran
    STATISTICS AND COMPUTING, 2014, 24 (05) : 739 - 752
  • [38] Hidden Semi-Markov Models for Semantic-Graph Language Modeling
    Yetim, Sadik Yagiz
    Duman, Tolga M.
    Arikan, Orhan
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2024, 361 (16):
  • [39] Equipment health diagnosis and prognosis using hidden semi-Markov models
    Ming Dong
    David He
    Prashant Banerjee
    Jonathan Keller
    The International Journal of Advanced Manufacturing Technology, 2006, 30 : 738 - 749
  • [40] Inhomogeneous hidden semi-Markov models for incompletely observed point processes
    Shahzadi, Amina
    Wang, Ting
    Bebbington, Mark
    Parry, Matthew
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2023, 75 (02) : 253 - 280