Accurate Visual-Inertial SLAM by Feature Re-identification

被引:1
|
作者
Peng, Xiongfeng [1 ]
Liu, Zhihua [1 ]
Wang, Qiang [1 ]
Kim, Yun-Tae [2 ]
Jeon, Myungjae [2 ]
Lee, Hong-Seok [2 ]
机构
[1] Samsung Res Ctr, SAIT China Lab, Beijing, Peoples R China
[2] Samsung Adv Inst Technol, Multimedia Proc Lab, Giheung, South Korea
关键词
VERSATILE;
D O I
10.1109/IROS51168.2021.9636186
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Most of the state-of-the-art visual inertial SLAM methods pay less attention to 2D-2D and 3D-2D matching with more reliable features in a long time span, which easily results in continuous estimation drift. In this paper, we propose an efficient drift-free visual-inertial SLAM method by a pose guided feature matching method to re-identify existing features from a spatial-temporal sensitive sub-global map. The re-identified features serve as augmented visual measurements to anchor the current frame and gradually decrease the accumulated error in the long run. When incorporating the measurements into the optimization module, it benefits to build a drift-free global map in the system. Extensive experiments show that our feature re-identification method is both effective and efficient. Specifically, when combining the feature re-identification with the state-of-the-art SLAM method [1], our method achieves 67.3% and 87.5% absolute trajectory error reduction with only a small additional computational cost on two public SLAM benchmark DBs: EuRoC and TUM-VI respectively.
引用
收藏
页码:9168 / 9175
页数:8
相关论文
共 50 条
  • [31] Visual-inertial SLAM in featureless environments on lunar surface
    Xie H.
    Chen W.
    Fan Y.
    Wang J.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2021, 42 (01):
  • [32] Deep Depth Estimation from Visual-Inertial SLAM
    Sartipi, Kourosh
    Do, Tien
    Ke, Tong
    Vuong, Khiem
    Roumeliotis, Stergios, I
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 10038 - 10045
  • [33] Research on Visual-Inertial SLAM Technology with GNSS Assistance
    Zhao, Lin
    Wang, Xiaohan
    Zheng, Xiaoze
    Jia, Chun
    CHINA SATELLITE NAVIGATION CONFERENCE PROCEEDINGS, CSNC 2022, VOL II, 2022, 909 : 425 - 434
  • [34] SLAM for Direct Optimization based Visual-Inertial Fusion
    Schwaab, M.
    Brohammer, E.
    Manoli, Y.
    2018 DGON INERTIAL SENSORS AND SYSTEMS (ISS), 2018,
  • [35] Robust Indoor Visual-Inertial SLAM with Pedestrian Detection
    Zhang, Heng
    Huang, Ran
    Yuan, Liang
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (IEEE-ROBIO 2021), 2021, : 802 - 807
  • [36] Visual and Visual-Inertial SLAM: State of the Art, Classification, and Experimental Benchmarking
    Servieres, Myriam
    Renaudin, Valerie
    Dupuis, Alexis
    Antigny, Nicolas
    JOURNAL OF SENSORS, 2021, 2021
  • [37] Visual and Visual-Inertial SLAM: State of the Art, Classification, and Experimental Benchmarking
    Centrale Nantes, Nantes
    44321, France
    不详
    不详
    44321, France
    不详
    44344, France
    Servières, Myriam (myriam.servieres@ec-nantes.fr), 1600, Hindawi Limited (2021):
  • [38] PAL-SLAM2: Visual and visual-inertial monocular SLAM for panoramic annular lens
    Wang, Ding
    Wang, Junhua
    Tian, Yuhan
    Fang, Yi
    Yuan, Zheng
    Xu, Min
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2024, 211 : 35 - 48
  • [39] An accurate and robust visual-inertial positioning method
    Niu, Zhiyuan
    Ren, Yongjie
    Lin, Jiarui
    Ma, Keyao
    Zhu, Jigui
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (04)
  • [40] A Robust Parallel Initialization Method for Monocular Visual-Inertial SLAM
    Zhong, Min
    Yao, Yiqing
    Xu, Xiaosu
    Wei, Hongyu
    SENSORS, 2022, 22 (21)