Analysis and Validation of a Unified Slip Factor Model for Impellers at Design and Off-Design Conditions

被引:56
|
作者
Qiu, Xuwen [1 ]
Japikse, David [1 ]
Zhao, Jinhui [1 ]
Anderson, Mark R. [1 ]
机构
[1] Concepts NREC, White River Jct, VT 05001 USA
来源
JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME | 2011年 / 133卷 / 04期
关键词
D O I
10.1115/1.4003022
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper presents a unified slip model for axial, radial, and mixed-flow impellers. The core assumption of the model is that the flow deviation or the slip velocity at the impeller exit is mainly originated from the blade loading near the discharge of an impeller and its subsequent relative eddy in the impeller passage. The blade loading is estimated and then used to derive the slip velocity using Stodola's assumption. The final form of the slip factor model can be successfully related to Carter's rule for axial impellers and Stodola's slip model for radial impellers, making the case for this model applicable to axial, radial, and mixed-flow impellers. Unlike conventional slip factor models for radial impellers, the new slip model suggests that the flow coefficient at the impeller exit is an important variable for the slip factor when there is significant blade turning at the impeller discharge. This explains the interesting off-design trends for slip factor observed from experiments, such as the rise of the slip factor with flow coefficient in the Eckardt A impeller. Extensive validation results for this new model are presented in this paper. Several cases are studied in detail to demonstrate how this new model can capture the slip factor variation at the off-design conditions. Furthermore, a large number of test data from more than 90 different compressors, pumps, and blowers were collected. Most cases are radial impellers, but a few axial impellers are also included. The test data and model predictions of the slip factor are compared at both design and off-design flow conditions. In total, over 1650 different flow conditions are evaluated. The unified model shows a clear advantage over the traditional slip factor correlations, such as the Busemann-Wiesner model, when off-design conditions are considered. [DOI: 10.1115/1.4003022]
引用
收藏
页数:9
相关论文
共 50 条
  • [21] On the performance of a high head Francis turbine at design and off-design conditions
    Aakti, B.
    Amstutz, O.
    Casartelli, E.
    Romanelli, G.
    Mangani, L.
    FRANCIS-99 WORKSHOP 1: STEADY OPERATION OF FRANCIS TURBINES, 2015, 579
  • [22] Numerical Flow Simulation in a Centrifugal Pump at Design and Off-Design Conditions
    Cheah, K. W.
    Lee, T. S.
    Winoto, S. H.
    Zhao, Z. M.
    INTERNATIONAL JOURNAL OF ROTATING MACHINERY, 2007, 2007
  • [23] Three dimensional flow in a compressor cascade at design and off-design conditions
    Kang, S.
    Hirsch, Ch.
    RFM, Revue Francaise de Mecanique, 1992, (03): : 193 - 201
  • [24] Analysis of recuperated combined cycle with small temperature rise under design/off-design conditions
    Zhang, Guoqiang
    Bai, Ziwei
    Yang, Yongping
    8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105 : 1507 - 1512
  • [25] Unsteady Fluid Flow Analysis of Tongue Geometry in a Centrifugal Pump at Design and Off-design Conditions
    Mahdi, M.
    Rasekh, M.
    Sajadi, V.
    JOURNAL OF APPLIED FLUID MECHANICS, 2022, 15 (06) : 1851 - 1867
  • [26] Numerical analysis of the unsteady flow in an axial-flow pump at design and off-design conditions
    Zhang, Rui
    Chen, Hongxun
    Xu, Hui
    Feng, Jiangang
    Wang, Xiaosheng
    Mou, Tong
    PROCEEDINGS OF THE SECOND CONFERENCE OF GLOBAL CHINESE SCHOLARS ON HYDRODYNAMICS (CCSH'2016), VOLS 1 & 2, 2016, : 536 - 542
  • [27] Performance of a jaws inlet under off-design conditions
    Gu, Tianlai
    Zhang, Shuai
    Zheng, Yao
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2017, 231 (02) : 294 - 305
  • [28] FLOW IN A CENTRIFUGAL FAN IMPELLER AT OFF-DESIGN CONDITIONS
    WRIGHT, T
    TZOU, KTS
    MADHAVAN, S
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 1984, 106 (04): : 913 - 919
  • [29] FLOW IN A CENTRIFUGAL FAN IMPELLER AT OFF-DESIGN CONDITIONS
    WRIGHT, T
    TZOU, KTS
    MADHAVAN, S
    MECHANICAL ENGINEERING, 1984, 106 (07) : 89 - 89
  • [30] Propeller modeling approaches for off-design operative conditions
    Gaggero, Stefano
    Dubbioso, Giulio
    Villa, Diego
    Muscari, Roberto
    Viviani, Michele
    OCEAN ENGINEERING, 2019, 178 : 283 - 305