Triboelectric nanogenerators as self-powered active sensors

被引:648
|
作者
Wang, Sihong [1 ]
Lin, Long [1 ]
Wang, Zhong Lin [1 ,2 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[2] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China
关键词
Triboelectric nanogenerators; Contact electrification; Mechanical energy harvesting; Wireless sensor networks; Self-powered systems; Self-powered active sensors; CONTACT ELECTRIFICATION; HARVESTING ENERGY; SURFACE-CHARGE; MOTION SENSOR; VIBRATION; GENERATOR; TRACKING; NANOSENSOR; SEPARATION; CONVERSION;
D O I
10.1016/j.nanoen.2014.10.034
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of internet of things and the related sensor technology have been a key driving force for the rapid development of industry and information technology. The requirement of wireless, sustainable and independent operation is becoming increasingly important for sensor networks that currently could include thousands even to millions of sensor nodes with different functionalities. For these purposes, developing technologies of self-powered sensors that can utilize the ambient environmental energy to drive the operation themselves is highly desirable and mandatory. The realization of self-powered sensors generally has two approaches: the first approach is to develop environmental energy harvesting devices for, driving the traditional sensors; the other is to develop a new category of sensors - self-powered active sensors - that can actively generate electrical signal itself as a response to a stimulation/triggering from the ambient environment. The recent invention and intensive development of triboelectric nanogenerators (TENGs) as a new technology for mechanical energy harvesting can be utilized as self-powered active mechanical sensors, because the parameters (magnitude, frequency, number of periods, etc.) of the generated electrical signal are directly determined by input mechanical behaviors. In this review paper, we first briefly introduce the fundamentals of TENGs, including the four basic working modes. Then, the most updated progress of developing TENGs as self-powered active sensors is reviewed. TENGs with different working modes and rationally designed structures have been developed as self-powered active sensors for a variety of mechanical motions, including pressure change, physical touching, vibrations, acoustic waves, linear displacement, rotation, tracking of moving objects, and acceleration detection. Through combining the open-circuit voltage and the short-circuit current, the detection of both static and dynamic processes has been enabled. The integration of individual sensor elements into arrays or matrixes helps to realize the mapping or parallel detection for multiple points. On the other hand, the relationship between the amplitude of TENG-generated electrical signal and the chemical state of its triboelectric surface enables TENGs to function as self-powered active chemical sensors. Through continuous research on the TENG-based self-powered active sensors in the coming years to further improve the sensitivity and realize the self-powered operation for the entire sensor node systems, they will soon have broad applications in touch screens, electronic skins, healthcare, environmental/infrastructure monitoring, national security, and more. (C) 2014 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:436 / 462
页数:27
相关论文
共 50 条
  • [21] Textile triboelectric nanogenerators for self-powered biomonitoring
    Lama, John
    Yau, Andy
    Chen, Guorui
    Sivakumar, Aditya
    Zhao, Xun
    Chen, Jun
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (35) : 19149 - 19178
  • [22] Triboelectric Nanogenerators for Self-Powered Breath Monitoring
    Shen, Sophia
    Xiao, Xiao
    Xiao, Xiao
    Chen, Jun
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (04) : 3952 - 3965
  • [23] Recent Advances in Self-Powered Wearable Sensors Based on Piezoelectric and Triboelectric Nanogenerators
    Rayegani, Arash
    Saberian, Mohammadmohsen
    Delshad, Zahra
    Liang, Junwei
    Sadiq, Muhammad
    Nazar, Ali Matin
    Mohsan, Syed Agha Hassnain
    Khan, Muhammad Asghar
    BIOSENSORS-BASEL, 2023, 13 (01):
  • [24] An Adaptable Interface Conditioning Circuit Based on Triboelectric Nanogenerators for Self-Powered Sensors
    Hu, Yongshan
    Yue, Qiuqin
    Lu, Shan
    Yang, Dongchen
    Shi, Shuxin
    Zhang, Xiaokun
    Yu, Hua
    MICROMACHINES, 2018, 9 (03):
  • [25] Research Progress and Prospect of Triboelectric Nanogenerators as Self-Powered Human Body Sensors
    Bu, Chuanyu
    Li, Fujiang
    Yin, Kai
    Pang, Jinbo
    Wang, Licheng
    Wang, Kai
    ACS APPLIED ELECTRONIC MATERIALS, 2020, 2 (04) : 863 - 878
  • [26] Paper-Based Origami Triboelectric Nanogenerators and Self-Powered Pressure Sensors
    Yang, Po-Kang
    Lin, Zong-Hong
    Pradel, Ken C.
    Lin, Long
    Li, Xiuhan
    Wen, Xiaonan
    He, Jr-Hau
    Wang, Zhong Lin
    ACS NANO, 2015, 9 (01) : 901 - 907
  • [27] Revolutionizing self-powered robotic systems with triboelectric nanogenerators
    Hajra, Sugato
    Panda, Swati
    Khanberh, Hamideh
    Vivekananthan, Venkateswaran
    Chamanehpour, Elham
    Mishra, Yogendra Kumar
    Kim, Hoe Joon
    NANO ENERGY, 2023, 115
  • [28] Toward self-powered photodetection enabled by triboelectric nanogenerators
    Wen, Zhen
    Fu, Jingjing
    Han, Lei
    Liu, Yina
    Peng, Mingfa
    Zheng, Li
    Zhu, Yuyan
    Sun, Xuhui
    Zi, Yunlong
    JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (44) : 11893 - 11902
  • [29] Implantable Triboelectric Nanogenerators for Self-Powered Cardiovascular Healthcare
    Che, Ziyuan
    O'Donovan, Sarah
    Xiao, Xiao
    Wan, Xiao
    Chen, Guorui
    Zhao, Xun
    Zhou, Yihao
    Yin, Junyi
    Chen, Jun
    SMALL, 2023, 19 (51)
  • [30] Self-powered electroporation technologies based on triboelectric nanogenerators
    Liu, Yitong
    Wang, Peng
    Wang, Congyu
    Yao, Shengxun
    Zhang, Dun
    NANO ENERGY, 2024, 123