Unit-free contractive projection theorems for C*-, JB*-, and JB-algebras

被引:1
|
作者
Cabrera Garcia, Miguel [1 ]
Rodriguez Palacios, Angel [1 ]
机构
[1] Univ Granada, Dept Anal Matemat, Fac Ciencias, E-18071 Granada, Spain
关键词
C*-algebra; JB*-algebra; JB-algebra; Contractive projection; POSITIVE PROJECTIONS; CONDITIONAL-EXPECTATION; STAR-ALGEBRAS; COMPLEMENTS; ISOMETRIES;
D O I
10.1016/j.jmaa.2020.123921
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that, if A is a (possibly non-unital) non-commutative JB*-algebra, and if pi : A -> A is a positive contractive linear projection, then pi(A), endowed with the product (x, y) -> pi(xy), becomes naturally a non-commutative JB*-algebra, and moreover the equality ($) pi(pi(a) . pi(b)) = pi(a . pi(b)) holds for all a, b is an element of A. The appropriate variant of this result, with 'JD-algebra' instead of 'non-commutative JB*-algebra', is also obtained. In the non-commutative JB*-case, the requirement of positiveness for pi can be relaxed to the one that the equality ($) holds. In general, this relaxing is strict, but it is not strict if pi is bicontractive. Actually, positive bicontractive linear projections on non-commutative JB*-algebras are fully described, and a structure theorem for bicontractive linear projections (without any extra requirement) on noncommutative JBW*-algebras is proved. Finally, bicontractive linear projections on C*-algebras are studied in detail. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] A holomorphic characterization of C*- and JB*-algebras
    El Amin, K
    Campoy, AM
    Palacios, AR
    MANUSCRIPTA MATHEMATICA, 2001, 104 (04) : 467 - 478
  • [32] A holomorphic characterization¶of C*- and JB*-algebras
    Kaidi El Amin
    Antonio Morales Campoy
    Angel Rodríguez Palacios
    manuscripta mathematica, 2001, 104 : 467 - 478
  • [33] Suzuki type estimates for exponentiated sums and generalized Lie-Trotter formulas in JB-algebras
    Chehade, Sarah
    Wang, Shuzhou
    Wang, Zhenhua
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 680 : 156 - 169
  • [34] Big points in C*-algebras and JB*-triples
    Guerrero, JB
    Rodríguez-Palacios, A
    QUARTERLY JOURNAL OF MATHEMATICS, 2005, 56 : 141 - 164
  • [35] Description of 2-local derivations on Baer JB-algebras of type I2
    Arzikulov, Farhodjon
    Urinboyev, Furkat
    ARCHIV DER MATHEMATIK, 2023, 121 (04) : 397 - 406
  • [36] The alternative Daugavet property of C*-algebras and JB*-triples
    Martin, Miguel
    MATHEMATISCHE NACHRICHTEN, 2008, 281 (03) : 376 - 385
  • [37] The Daugavet equation for polynomials on C*-algebras and JB*-triples
    Cabezas, David
    Martin, Miguel
    Peralta, Antonio M.
    ADVANCES IN MATHEMATICS, 2024, 439
  • [38] Local triple derivations on C*-algebras and JB*-triples
    Burgos, Maria
    Fernandez-Polo, Francisco J.
    Peralta, Antonio M.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2014, 46 : 709 - 724
  • [39] Automatic continuity of derivations on C*-algebras and JB*-triples
    Peralta, Antonio M.
    Russo, Bernard
    JOURNAL OF ALGEBRA, 2014, 399 : 960 - 977
  • [40] TERNARY WEAKLY AMENABLE C*-ALGEBRAS AND JB*-TRIPLES
    Ho, Tony
    Peralta, Antonio M.
    Russo, Bernard
    QUARTERLY JOURNAL OF MATHEMATICS, 2013, 64 (04): : 1109 - 1139