A new scheme nun EEG signals processing in brain-computer interface systems

被引:0
|
作者
Esmaedi, Maryam [1 ]
Jabalameli, Mohamad H. [1 ]
Moghadamtj, Zeinab [1 ]
机构
[1] Amir Kabir Univ Technol, Dept Comp Engn & IT, Tehran, Iran
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, Dynamic Synapse Neural Network (DSNN) has been applied to perform EEG signal recognition task. The wavelet packet transform is applied to the EEG signal in order to decompose it into frequency sub-bands, before being introduced to the neural network. In this study we have applied a Genetic algorithm (GA) learning method with different fitness functions to optimize the neural network. The advantage of the GA method is that it facilitates finding of a semi-optimal parameter set in the search space domain. The network has been testes for EEG signals tat are provided from BCI Competition 2003 and the results show the power of DSNN in processing of noisy nature signals as EEG signals.
引用
收藏
页码:522 / 527
页数:6
相关论文
共 50 条
  • [1] Exploring EEG signals in a Brain-Computer Interface
    Zubrycki, Pawel
    Mulawka, Jan
    PHOTONICS APPLICATIONS IN ASTRONOMY, COMMUNICATIONS, INDUSTRY, AND HIGH-ENERGY PHYSICS EXPERIMENTS 2014, 2014, 9290
  • [2] A possible use of EEG signals in a brain-computer interface
    Logar, Vito
    Belic, Ales
    ZDRAVNISKI VESTNIK-SLOVENIAN MEDICAL JOURNAL, 2011, 80 (02): : 92 - 97
  • [3] EEG processing and its application in brain-computer interface
    Wang Jing
    Xu Guanghua
    Xie Jun
    Zhang Feng
    Li Lili
    Han Chengcheng
    Li Yeping
    Sun Jingjing
    Engineering Sciences, 2013, 11 (01) : 54 - 61
  • [4] Classification of EEG Signals for Brain-Computer Interface Applications: Performance Comparison
    Ilyas, M. Z.
    Saad, P.
    Ahmad, M. I.
    Ghani, A. R. I.
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON ROBOTICS, AUTOMATION AND SCIENCES (ICORAS 2016), 2016,
  • [5] Hybrid Brain-Computer Interface (BCI) based on the EEG and EOG signals
    Jiang, Jun
    Zhou, Zongtan
    Yin, Erwei
    Yu, Yang
    Hu, Dewen
    BIO-MEDICAL MATERIALS AND ENGINEERING, 2014, 24 (06) : 2919 - 2925
  • [6] Increasing the Classification Accuracy of EEG based Brain-computer Interface Signals
    Dimitrov, Georgi
    Petrov, Pavel
    Dimitrova, Inna
    Panayotova, Galina
    Garvanov, Ivan
    Bychkov, Olexiy
    Kovatcheva, Eugenia
    Petrova, Pepa
    2020 10TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER INFORMATION TECHNOLOGIES (ACIT), 2020, : 386 - 390
  • [7] New method of classifying eeg signals in brain-computer interfaces
    Tang, Yan
    Liu, Jian-Xin
    Gong, An-Dong
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2009, 38 (06): : 1034 - 1038
  • [8] Symmetrical feature for interpreting motor imagery EEG signals in the brain-computer interface
    Park, Seung-Min
    Yu, Xinyang
    Chum, Pharino
    Lee, Woo-Young
    Sim, Kwee-Bo
    OPTIK, 2017, 129 : 163 - 171
  • [9] EEG Acquisition and Application in Brain-Computer Interface
    Zhao Haibin
    Liu Chong
    Wang Hong
    PROCEEDINGS OF THE THIRD INTERNATIONAL SYMPOSIUM ON TEST AUTOMATION & INSTRUMENTATION, VOLS 1 - 4, 2010, : 1397 - 1399