Efficient plant fibre yarn pre-treatment for 3D printed continuous flax fibre/poly(lactic) acid composites

被引:37
|
作者
Long, Yu [1 ]
Zhang, Zhongsen [1 ]
Fu, Kunkun [1 ]
Li, Yan [1 ,2 ]
机构
[1] Tongji Univ, Sch Aerosp Engn & Appl Mech, Shanghai 200092, Peoples R China
[2] Tongji Univ, Minist Educ, Key Lab Adv Civil Engn Mat, Shanghai 200092, Peoples R China
关键词
3D printing; Continuous flax fibre reinforced composites; (CFFRCs); Surface treatment; Mode I interlaminar Fracture toughness; Impact strength; INTERLAMINAR FRACTURE-TOUGHNESS; SECTIONAL ASPECT RATIO; MECHANICAL-PROPERTIES; UNIDIRECTIONAL FLAX; SURFACE-TREATMENTS; NATURAL FIBERS; FLEXURAL PROPERTIES; TENSILE PROPERTIES; PERFORMANCE; INTERFACE;
D O I
10.1016/j.compositesb.2021.109389
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To address the issue of high void contents in 3D printed continuous flax fibre reinforced composites (CFFRCs), an efficient fibre pre-treatment method was proposed to improve the compatibility between plant fibre and resin matrix so that the high-quality manufacturing and excellent mechanical performance were achieved. The surface of flax yarns was treated by silane coupling agents to improve the wettability and interfacial performance. The CFFRCs were then prepared by the customised 3D printing technology, and the mechanical tests were conducted to measure their mechanical properties. It was found that the mechanical properties of the CFFRCs were greatly improved after the treatments which induced very low void contents of less than 1.1%, due to the improved wettability and the interfacial bonding between the flax yarns and resin matrix. The mechanical properties of the CFFRCs prepared by 3D printing in the present work were comparable to those manufactured by compression moulding in literature.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] 3D printing of discontinuous and continuous fibre composites using stereolithography
    Sano, Yukako
    Matsuzaki, Ryosuke
    Ueda, Masahito
    Todoroki, Akira
    Hirano, Yoshiyasu
    ADDITIVE MANUFACTURING, 2018, 24 : 521 - 527
  • [22] Ageing effect on the low-velocity impact response of 3D printed continuous fibre reinforced composites
    Ferreira, L. M.
    Aranda, M. T.
    Munoz-Reja, M.
    Coelho, C. A. C. P.
    Tavara, L.
    COMPOSITES PART B-ENGINEERING, 2023, 267
  • [23] Strength and Hardness of 3D Printed Poly Lactic Acid and Carbon Fiber Poly Lactic Acid Thermoplastics
    Reddy, J. Durga Prasad
    Mishra, Debashis
    Chetty, Nagaraj
    ADVANCES IN LIGHTWEIGHT MATERIALS AND STRUCTURES, ACALMS 2020, 2020, 8 : 625 - 634
  • [24] 3D printing of continuous carbon fibre reinforced polymer composites with optimised structural topology and fibre orientation
    Zhang, Haoqi
    Wang, Shuai
    Zhang, Ka
    Wu, Jiang
    Li, Aonan
    Liu, Jie
    Yang, Dongmin
    COMPOSITE STRUCTURES, 2023, 313
  • [25] Novel repair of bolted composite joints using 3D printed continuous fibre patches with custom fibre paths
    Li, Aonan
    Lyu, Yahui
    Yang, Bin
    Yang, Dongmin
    COMPOSITES PART B-ENGINEERING, 2025, 295
  • [26] The mechanical properties of flax fibre reinforced poly(lactic acid) bio-composites exposed to wet, freezing and humid environments
    Khanlou, Hossein Mohammad
    Hall, Wayne
    Woodfield, Peter
    Summerscales, John
    Francucci, Gaston
    JOURNAL OF COMPOSITE MATERIALS, 2018, 52 (06) : 835 - 850
  • [27] Mechanical and dynamic performance of 3D-printed continuous carbon fibre Onyx composites
    Nguyen-Van, Vuong
    Peng, Chenxi
    Tran, Phuong
    Wickramasinghe, Sachini
    Do, Truong
    Ruan, Dong
    THIN-WALLED STRUCTURES, 2024, 201
  • [28] 3D printing of continuous cellulose fibre composites: microstructural and mechanical characterisation
    Touchard, Fabienne
    Marchand, Damien
    Chocinski-Arnault, Laurence
    Fournier, Teddy
    Magro, Christophe
    RAPID PROTOTYPING JOURNAL, 2023, 29 (09) : 1879 - 1887
  • [29] Design space and manufacturing of programmable 4D printed continuous flax fibre polylactic acid composite hygromorphs
    de Kergariou, Charles
    Le Duigou, Antoine
    Perriman, Adam
    Scarpa, Fabrizio
    MATERIALS & DESIGN, 2023, 225
  • [30] Post-processing effects on microstructure, interlaminar and thermal properties of 3D printed continuous carbon fibre composites
    Pascual-Gonzalez, C.
    San Martin, P.
    Lizarralde, I
    Fernandez, A.
    Leon, A.
    Lopes, C. S.
    Fernandez-Blazquez, J. P.
    COMPOSITES PART B-ENGINEERING, 2021, 210