Velocity gradient statistics in turbulent shear flow: an extension of Kolmogorov's local equilibrium theory

被引:9
|
作者
Kaneda, Yukio [1 ]
Yamamoto, Yoshinobu [2 ]
机构
[1] Nagoya Univ, Grad Sch Math, Nagoya, Aichi 4648602, Japan
[2] Univ Yamanashi, Dept Mech Engn, Kofu, Yamanashi 4008511, Japan
关键词
turbulence theory; turbulence simulation; turbulent boundary layers; ENERGY-DISSIPATION; CHANNEL FLOWS; REGION; TENSOR;
D O I
10.1017/jfm.2021.815
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper presents an extension of Kolmogorov's local similarity hypotheses of turbulence to include the influence of mean shear on the statistics of the fluctuating velocity in the dissipation range of turbulent shear flow. According to the extension, the moments of the fluctuating velocity gradients are determined by the local mean rate of the turbulent energy dissipation <epsilon > per unit mass, kinematic viscosity nu and parameter gamma = S(nu/ <epsilon >)(1/2), provided that gamma is small in an appropriate sense, where S is an appropriate norm of the local gradients of the mean flow gamma The statistics of the moments are nearly isotropic for sufficiently small gamma, and the anisotropy of moments decreases approximately in proportion to gamma. This paper also presents a report on the second-order moments of the fluctuating velocity gradients in direct numerical simulations (DNSs) of turbulent channel flow (TCF) with the friction Reynolds number Re-tau up to approximate to 8000. In the TCF, there is a range y where gamma scales approximately alpha y(-1/2), and the anisotropy of the moments of the gradients decreases with y nearly in proportion to y(-1/2), where y is the distance from the wall. The theoretical conjectures proposed in the first part are in good agreement with the DNS results.
引用
收藏
页码:140 / 164
页数:31
相关论文
共 50 条
  • [21] Structure and statistics of intermittency in homogeneous turbulent shear flow
    Brasseur, J.G.
    Lin, W.-Q.
    Proceedings of the European Turbulence Conference, 1991,
  • [22] Analysis of Kolmogorov’s Hypotheses in a Compressible Turbulent Flow
    A. N. Sekundov
    K. Ya. Yakubovskii
    Fluid Dynamics, 2019, 54 : 184 - 193
  • [23] Analysis of Kolmogorov's Hypotheses in a Compressible Turbulent Flow
    Sekundov, A. N.
    Yakubovskii, K. Ya.
    FLUID DYNAMICS, 2019, 54 (02) : 184 - 193
  • [24] DETERMINATION OF POSITION OF MAXIMUM VELOCITY IN TURBULENT SHEAR FLOW
    DURST, F
    LAUNDER, BE
    AKESSON, H
    AERONAUTICAL JOURNAL, 1971, 75 (723): : 196 - &
  • [25] Scaling properties of the velocity circulation in a turbulent shear flow
    Struglia, MV
    Benzi, R
    Biferale, L
    Tripiccione, R
    ADVANCES IN TURBULENCES VI, 1996, 36 : 259 - 262
  • [26] THEORY OF DISPERSION IN TURBULENT SHEAR-FLOW
    HUANG, CH
    ATMOSPHERIC ENVIRONMENT, 1979, 13 (04) : 453 - 463
  • [27] Experimental Determination of Lagrangian Velocity Statistics in Turbulent Pipe Flow
    R. J. E. Walpot
    J. G. M. Kuerten
    C. W. M. van der Geld
    Flow, Turbulence and Combustion, 2006, 76 : 163 - 175
  • [28] Velocity statistics in turbulent channel flow up to Reτ=4000
    Bernardini, Matteo
    Pirozzoli, Sergio
    Orlandi, Paolo
    JOURNAL OF FLUID MECHANICS, 2014, 742 : 171 - 191
  • [29] Experimental determination of Lagrangian velocity statistics in turbulent pipe flow
    Walpot, R. J. E.
    Kuerten, J. G. M.
    van der Geld, C. W. M.
    FLOW TURBULENCE AND COMBUSTION, 2006, 76 (02) : 163 - 175
  • [30] LAGRANGIAN STATISTICS FORM NUMERICALLY INTEGRATED TURBULENT SHEAR FLOW
    DEARDORF.JW
    PESKIN, RL
    PHYSICS OF FLUIDS, 1970, 13 (03) : 584 - &