Magnetic field effects in the near-field radiative heat transfer between planar structures

被引:28
|
作者
Moncada-Villa, E. [1 ]
Cuevas, J. C. [2 ,3 ]
机构
[1] Univ Pedagog & Tecnol Colombia, Escuela Fis, Ave Cent Norte 39-115, Tunja, Colombia
[2] Univ Autonoma Madrid, Dept Fis Teor Mat Condensada, E-28049 Madrid, Spain
[3] Univ Autonoma Madrid, Condensed Matter Phys Ctr IFIMAC, E-28049 Madrid, Spain
关键词
50;
D O I
10.1103/PhysRevB.101.085411
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
One of the main challenges in the field of thermal radiation is to actively control the near-field radiative heat transfer (NFRHT) between closely spaced bodies. In this context, the use of an external magnetic field has emerged as a very attractive possibility and a plethora of physical phenomena have been put forward in the last few years. Here, we predict some additional magnetic-field-induced phenomena that can take place in the context of NFRHT between planar layered structures containing magneto-optical (MO) materials (mainly doped semiconductors like InSb). In particular, we predict the possibility of increasing the NFRHT upon applying an external magnetic field in an asymmetric structure consisting of two infinite plates made of InSb and Au. We also study the impact of a magnetic field in the NFRHT between structures containing MO thin films and show that the effect is more drastic than in their bulk counterparts. Finally, we systematically investigate the anisotropic thermal magnetoresistance, i.e., the dependence of the radiative heat conductance on the orientation of an external magnetic field, in the case of two infinite plates made of InSb and show that one can strongly modulate the NFRHT by simply changing the orientation of the magnetic field. All the phenomena predicted in this work can be experimentally tested with existent technology and provide new insight into the topic of active control of NFRHT.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Near-field radiative heat transfer between clusters of dielectric nanoparticles
    Dong, J.
    Zhao, J. M.
    Liu, L. H.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2017, 197 : 114 - 122
  • [32] Near-field radiative heat transfer between multilayer structures composed of different hyperbolic materials
    Yu, Kun
    Li, Lin
    Shi, Kezhang
    Liu, Haotuo
    Hu, Yang
    Zhang, Kaihua
    Liu, Yufang
    Wu, Xiaohu
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2023, 211
  • [33] Near-Field Radiative Heat Transfer between Disordered Multilayer Systems
    Tian, Peng
    Ge, Wenxuan
    Li, Songsong
    Gao, Lei
    Jiang, Jianhua
    Xu, Yadong
    CHINESE PHYSICS LETTERS, 2023, 40 (06)
  • [34] Near-field radiative heat transfer between moving anisotropic surfaces
    Wang, Yi-Xu
    Zhang, Yong
    Hao, Yun-Chao
    Cai, Zhi-Ming
    Yi, Hong-Liang
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2024, 315
  • [35] Near-field radiative heat transfer between metamaterial thin films
    Basu, Soumyadipta
    Francoeur, Mathieu
    OPTICS LETTERS, 2014, 39 (05) : 1266 - 1269
  • [36] Near-field radiative heat transfer between shifted graphene gratings
    Luo, Minggang
    Jeyar, Youssef
    Guizal, Brahim
    Antezza, Mauro
    PHYSICAL REVIEW B, 2024, 109 (19)
  • [37] NEAR-FIELD RADIATIVE HEAT TRANSFER BETWEEN MATERIALS WITH DIELECTRIC COATINGS
    Fu, Ceji
    Tan, Wenchang
    MICRONANO2008-2ND INTERNATIONAL CONFERENCE ON INTEGRATION AND COMMERCIALIZATION OF MICRO AND NANOSYSTEMS, PROCEEDINGS, 2008, : 413 - 419
  • [38] Penetration depth in near-field radiative heat transfer between metamaterials
    Basu, Soumyadipta
    Francoeur, Mathieu
    APPLIED PHYSICS LETTERS, 2011, 99 (14)
  • [39] Near-field radiative heat transfer between nanoporous GaN films
    Han, Xiaozheng
    Zhang, Jihong
    Liu, Haotuo
    Wu, Xiaohu
    Leng, Huiwen
    CHINESE PHYSICS B, 2024, 33 (04)
  • [40] Near-field radiative heat transfer between nanoporous GaN films
    韩晓政
    张纪红
    刘皓佗
    吴小虎
    冷惠文
    Chinese Physics B, 2024, (04) : 647 - 658