Spatio-temporal synchronization of coupled parametrically excited pendulum arrays

被引:9
|
作者
Zhang, Y [1 ]
Du, GH
机构
[1] Nanjing Univ, Inst Acoust, Nanjing 210093, Peoples R China
[2] Nanjing Univ, State Key Lab Modern Acoust, Nanjing 210093, Peoples R China
关键词
D O I
10.1006/jsvi.2000.3180
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, parametrically excited chaotic pendulum arrays are considered with the spatial diffusive coupling. The drive array undergoes extremely irregular behavior. both temporally as well as spatially. To synchronize two coupled spatio-temporal chaotic arrays, the periodic feedback method is used. The synchronization condition is given to determine the critical values of periodic characteristic time and feedback weight. Furthermore, the influences of noise and parameter mismatch on synchronization are investigated. It is found that the periodic feedback method has strong robustness to noise and parameter mismatch, which promises its potential application in synchronizing parametrically excited pendulums. (C) 2001 Academic Press.
引用
收藏
页码:983 / 994
页数:12
相关论文
共 50 条
  • [31] Optical Chaos Synchronization and Spatio-temporal Digital Cryptography
    Banerjee, Santo
    Mukhopadhyay, Sumona
    COMPUTER NETWORKS AND INTELLIGENT COMPUTING, 2011, 157 : 320 - +
  • [32] SPATIO-TEMPORAL INTERMITTENCY IN COUPLED MAP LATTICES
    CHATE, H
    MANNEVILLE, P
    PHYSICA D, 1988, 32 (03): : 409 - 422
  • [33] Suppressing temporal and spatio-temporal chaos by multiple weak resonant excitations:: Application to arrays of chaotic coupled oscillators
    Chacón, R
    Preciado, V
    Tereshko, V
    EUROPHYSICS LETTERS, 2003, 63 (05): : 667 - 673
  • [34] On global anti-synchronization of chaotic parametrically excited pendulum under linear feedback control
    Chen, Yun
    Wu, Xiaofeng
    Zhao, Xiaolong
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 808 - 811
  • [35] Onset instability of a parametrically excited pendulum array
    Chen, Weizhong
    Lin, Wengang
    Zhu, Yifei
    PHYSICAL REVIEW E, 2007, 75 (01):
  • [36] Stable rotation of a parametrically excited double pendulum
    Nagamine, Takuo
    Sato, Yutchi
    Koseki, Yoshikazu
    JOURNAL OF VIBRATION AND CONTROL, 2007, 13 (02) : 111 - 124
  • [37] Asymptotic Analysis of Parametrically Excited Spring Pendulum
    Starosta, R.
    Awrejcewicz, J.
    SYROM 2009: PROCEEDINGS OF THE 10TH IFTOMM INTERNATIONAL SYMPOSIUM ON SCIENCE OF MECHANISMS AND MACHINES, 2009, 2010, : 421 - +
  • [38] Chaos in a Parametrically Excited Pendulum with Damping Force
    Lu, Chunqing
    DYNAMICAL SYSTEMS AND METHODS, 2012, : 3 - 27
  • [39] Convergence performance of subband arrays for spatio-temporal equalization
    Zhang, YM
    Yang, KH
    Amin, MG
    2001 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING PROCEEDINGS, 2001, : 544 - 547
  • [40] Symmetry breaking bifurcations of a parametrically excited pendulum
    B. P. Mann
    M. A. Koplow
    Nonlinear Dynamics, 2006, 46 : 427 - 437