Channel Estimation for RIS-Aided mmWave MIMO Systems via Atomic Norm Minimization

被引:144
|
作者
He, Jiguang [1 ]
Wymeersch, Henk [2 ]
Juntti, Markku [1 ]
机构
[1] Univ Oulu, Ctr Wireless Commun, Oulu 90014, Finland
[2] Chalmers Univ Technol, Dept Elect Engn, S-41296 Gothenburg, Sweden
基金
欧盟地平线“2020”; 芬兰科学院; 瑞典研究理事会;
关键词
Channel estimation; MIMO communication; Minimization; Estimation; Training; Phase control; Wireless communication; Atomic norm minimization; channel parameter estimation; compressive sensing; millimeter wave MIMO; reconfigurable intelligent surface; RECONFIGURABLE INTELLIGENT SURFACES; REFLECTING SURFACE; MASSIVE MIMO; ROBUSTNESS; LOCATION; 5G;
D O I
10.1109/TWC.2021.3070064
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A reconfigurable intelligent surface (RIS) can shape the radio propagation environment by virtue of changing the impinging electromagnetic waves towards any desired directions, thus, breaking the general Snell's reflection law. However, the optimal control of the RIS requires perfect channel state information (CSI) of the individual channels that link the base station (BS) and the mobile station (MS) to each other via the RIS. Thereby super-resolution channel (parameter) estimation needs to be efficiently conducted at the BS or MS with CSI feedback to the RIS controller. In this paper, we adopt a two-stage channel estimation scheme for RIS-aided millimeter wave (mmWave) MIMO systems without a direct BS-MS channel, using atomic norm minimization to sequentially estimate the channel parameters, i.e., angular parameters, angle differences, and the products of propagation path gains. We evaluate the mean square error of the parameter estimates, the RIS gains, the average effective spectrum efficiency bound, and average squared distance between the designed beamforming and combining vectors and the optimal ones. The results demonstrate that the proposed scheme achieves super-resolution estimation compared to the existing benchmark schemes, thus offering promising performance in the subsequent data transmission phase.
引用
收藏
页码:5786 / 5797
页数:12
相关论文
共 50 条
  • [31] Wireless Beacon Enabled Hybrid Sparse Channel Estimation for RIS-Aided mmWave Communications
    Guo, Xufeng
    Chen, Yuanbin
    Wang, Ying
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2023, 71 (05) : 3144 - 3160
  • [32] RIS-Aided mmWave Transmission: A Stochastic Majorization-Minimization Approach
    Zhou, Gui
    Pan, Cunhua
    Ren, Hong
    Wang, Kezhi
    Chai, Kok Keong
    [J]. IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,
  • [33] Channel Estimation in RIS-Aided Communications With Interference
    Long, Wen-Xuan
    Moretti, Marco
    Sanguinetti, Luca
    Chen, Rui
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2023, 12 (10) : 1751 - 1755
  • [34] RIS Aided Gridless 2D-DOA Estimation via Decoupled Atomic Norm Minimization
    Zheng, Yu
    Wang, Qianli
    Ren, Longfei
    Ma, Zheng
    Fan, Pingzhi
    [J]. IEEE Transactions on Vehicular Technology, 2024, 73 (10) : 15733 - 15738
  • [35] MmWave Channel Estimation via Atomic Norm Minimization for Multi-User Hybrid Precoding
    Deng, Junquan
    Tirkkonent, Olav
    Studer, Christoph
    [J]. 2018 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2018,
  • [36] EFFICIENT TWO-STAGE BEAM TRAINING AND CHANNEL ESTIMATION FOR RIS-AIDED MMWAVE SYSTEMS VIA FAST ALTERNATING LEAST SQUARES
    Chung, Hyeonjin
    Kim, Sunwoo
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 5188 - 5192
  • [37] Innovative Joint CFO and Channel Estimation for RIS-Aided OFDM Systems
    Lin, Tsui-Tsai
    Hwang, Fuh-Hsin
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (04) : 929 - 933
  • [38] Channel Estimation for RIS-Aided Multiuser Millimeter-Wave Systems
    Zhou, Gui
    Pan, Cunhua
    Ren, Hong
    Popovski, Petar
    Swindlehurst, A. Lee
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 1478 - 1492
  • [39] Generalized Superimposed Channel Estimation for Uplink RIS-aided Cell-free Massive MIMO Systems
    Ge, Hanxiao
    Garg, Navneet
    Ratnarajah, Tharmalingam
    [J]. 2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2022, : 405 - 410
  • [40] A Survey on Optimal Channel Estimation Methods for RIS-Aided Communication Systems
    Drampalou, Stamatia F.
    Miridakis, Nikolaos I.
    Leligou, Helen C.
    Karkazis, Panagiotis A.
    [J]. SIGNALS, 2023, 4 (01): : 208 - 234