A new method for robust Schur stability analysis

被引:3
|
作者
de Oliveira, Mauricio C. [1 ]
Oliveira, Ricardo C. L. F. [2 ]
Peres, Pedro L. D. [2 ]
机构
[1] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
[2] Univ Campinas UNICAMP, Sch Elect & Comp Engn, BR-13083852 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
robust stability; discrete-time systems; parameter-dependent Lyapunov functions; linear matrix inequalities; DEPENDENT LYAPUNOV FUNCTIONS; LMI CONDITION; POLYTOPIC SYSTEMS; LINEAR-SYSTEMS; RELAXATIONS; OPTIMIZATION;
D O I
10.1080/00207179.2010.511274
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article is concerned with robust stability of uncertain discrete-time linear systems. The matrix defining the linear system (system matrix) is assumed to depend affinely on a set of time-invariant unknown parameters lying on a known polytope. Robust stability is investigated by checking whether a certain integer power of the uncertain system matrix has spectral norm less than one. This peculiar stability test is shown to be equivalent to the positivity analysis of a homogeneous symmetric matrix polynomial with precisely known coefficients and degree indexed by . A unique feature is that no extra variables need to be added to the problems being solved. Numerical experiments reveal that the value of needed to test robust stability is mostly independent of the system dimension but grows sharply as the eigenvalues of the uncertain system approach the unit circle. By identifying the proposed stability test with a particular choice of a parameter-dependent Lyapunov function, extra variables can be introduced, yielding linear matrix inequalities optimisation problems of improved convergence.
引用
收藏
页码:2181 / 2192
页数:12
相关论文
共 50 条
  • [21] Testing the robust Schur stability of a segment of complex polynomials
    Yang, SF
    Hwang, C
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2001, 32 (10) : 1243 - 1250
  • [23] Robust Hurwitz and Schur stability via interval positivity
    Keel, L. H.
    Stratton, T. F.
    Bhattacharyya, S. P.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2013, 20 (02) : 281 - 290
  • [24] On the Robust Stability of 2D Schur Polynomials
    N. E. Mastorakis
    Journal of Optimization Theory and Applications, 2000, 106 : 431 - 439
  • [25] Robust Hurwitz and Schur stability test for interval matrices
    Xiao, Y
    Unbehauen, R
    PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 4209 - 4214
  • [26] Improved Optimum Radius for Robust Stability of Schur Polynomials
    Younseok Choo
    Journal of Optimization Theory and Applications, 2014, 161 : 553 - 556
  • [27] Robust Schur Stability of Polynomials with Polynomial Parameter Dependency
    Jürgen Garloff
    Birgit Graf
    Multidimensional Systems and Signal Processing, 1999, 10 : 189 - 199
  • [28] Robust Schur stability of polynomials with polynomial parameter dependency
    Fachhochschule Konstanz, Fachbereich Informatik, Postfach 10 05 43, D-78405 Konstanz, Germany
    Multidimens Syst Signal Proc, 2 (189-199):
  • [29] A new method on robust connective stability analysis for a class of interconnected power systems
    Li, XH
    Chen, XB
    Jing, YW
    2004 8TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION, VOLS 1-3, 2004, : 1449 - 1453
  • [30] A New Method for Multiparameter Robust Stability Distribution Analysis of Linear Analog Circuits
    Yan, Changhao
    Wang, Sheng-Guo
    Zeng, Xuan
    2011 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN (ICCAD), 2011, : 420 - 427