Uncovering Discrete Non-Linear Dependence with Information Theory

被引:3
|
作者
Golub, Anton [1 ]
Chliamovitch, Gregor [2 ]
Dupuis, Alexandre [1 ,2 ]
Chopard, Bastien [2 ]
机构
[1] Olsen Ltd, CH-8053 Zurich, Switzerland
[2] Univ Geneva, Dept Comp Sci, CH-1227 Carouge, Switzerland
来源
ENTROPY | 2015年 / 17卷 / 05期
关键词
Markov process; Kullback-Leibler divergence; information theory; MARKOV-CHAIN; MODEL;
D O I
10.3390/e17052606
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we model discrete time series as discrete Markov processes of arbitrary order and derive the approximate distribution of the Kullback-Leibler divergence between a known transition probability matrix and its sample estimate. We introduce two new information-theoretic measurements: information memory loss and information codependence structure. The former measures the memory content within a Markov process and determines its optimal order. The latter assesses the codependence among Markov processes. Both measurements are evaluated on toy examples and applied on high frequency foreign exchange data, focusing on 2008 financial crisis and 2010/2011 Euro crisis.
引用
收藏
页码:2606 / 2623
页数:18
相关论文
共 50 条