A ratchet trap for Leidenfrost drop

被引:69
|
作者
Cousins, Thomas R. [1 ]
Goldstein, Raymond E. [1 ]
Jaworski, Justin W. [1 ]
Pesci, Adriana I. [1 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
基金
美国国家科学基金会;
关键词
condensation/evaporation; drops; STABILITY;
D O I
10.1017/jfm.2012.27
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The Leidenfrost effect occurs when a drop of liquid (or a sublimating solid) is levitated above a sufficiently hot surface through the action of an insulating vapour layer flowing from its bottom surface. When such a drop is levitated above a surface with parallel, asymmetric sawtooth-shaped ridges it is known to be propelled in a unique direction, or ratcheted, by the interaction of the vapour layer with the surface. Here we exploit this effect to construct a 'ratchet trap' for Leidenfrost drops: a surface with concentric circular ridges, each asymmetric in cross-section. A combination of experiment and theory is used to study the dynamics of drops in these traps, whose centre is a stable fixed point. Numerical analysis of the evaporating flows over a ratchet surface suggests new insights into the mechanism of motion rectification that are incorporated into the simplest equations of motion for ratchet-driven motion of a Leidenfrost body; these resemble a central force problem in celestial mechanics with mass loss and drag. A phase-plane analysis of experimental trajectories is used to extract more detailed information about the ratcheting phenomenon. Orbiting drops are found to exhibit substantial deformations; those with large internal angular momentum can even undergo binary fission. Such ratchet traps may thus prove useful in the controlled study of many properties of Leidenfrost drops.
引用
收藏
页码:215 / 227
页数:13
相关论文
共 50 条
  • [21] Tailoring vapor film beneath a Leidenfrost drop
    Li, An
    Li, Huizeng
    Lyu, Sijia
    Zhao, Zhipeng
    Xue, Luanluan
    Li, Zheng
    Li, Kaixuan
    Li, Mingzhu
    Sun, Chao
    Song, Yanlin
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [22] Migration of a viscoelastic drop in a ratchet microchannel
    Nema, Anant Kumar
    Tripathi, Manoj Kumar
    Sahu, Kirti Chandra
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2022, 307
  • [23] MODELING OF WATER DROP IMPACTIONS IN THE LEIDENFROST REGIME
    Senoner, J. M.
    Castanet, G.
    Caballina, O.
    Villedieu, P.
    ATOMIZATION AND SPRAYS, 2016, 26 (09) : 853 - 888
  • [24] Asymptotic theory for a Leidenfrost drop on a liquid pool
    van Limbeek, Michiel A. J.
    Sobac, Benjamin
    Rednikov, Alexey
    Colinet, Pierre
    Snoeijer, Jacco H.
    JOURNAL OF FLUID MECHANICS, 2019, 863 : 1157 - 1189
  • [25] Leidenfrost drop dynamics: Exciting dormant modes
    Bergen, Jesse E.
    Basso, Bailey C.
    Bostwick, Joshua B.
    PHYSICAL REVIEW FLUIDS, 2019, 4 (08)
  • [26] Tailoring vapor film beneath a Leidenfrost drop
    An Li
    Huizeng Li
    Sijia Lyu
    Zhipeng Zhao
    Luanluan Xue
    Zheng Li
    Kaixuan Li
    Mingzhu Li
    Chao Sun
    Yanlin Song
    Nature Communications, 14
  • [27] Self-Propelled Polymeric Droplet in Leidenfrost State on a Superheated Ratchet Surface
    Masuda, Hayato
    Okumura, Shinichiro
    Wada, Koki
    Iyota, Hiroyuki
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2024, 63 (15) : 6785 - 6793
  • [28] Lattice Boltzmann modeling of self-propelled Leidenfrost droplets on ratchet surfaces
    Li, Qing
    Kang, Q. J.
    Francois, M. M.
    Hu, A. J.
    SOFT MATTER, 2016, 12 (01) : 302 - 312
  • [29] Prediction of Vapor Film Thickness Below a Leidenfrost Drop
    Dasgupta, Arnab
    Chandraker, D. K.
    Nayak, A. K.
    Vijayan, P. K.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2015, 137 (12):
  • [30] Measurement of the vapor layer under a dynamic Leidenfrost drop
    Lee, Gi Cheol
    Noh, Hyunwoo
    Kwak, Ho Jae
    Kim, Tong Kyun
    Park, Hyun Sun
    Fezzaa, Kamel
    Kim, Moo Hwan
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 124 : 1163 - 1171