Effect of plant growth-promoting Rhizobacteria on plant hormone homeostasis

被引:123
|
作者
Tsukanova, K. A. [1 ]
Chebotar, V. K. [1 ]
Meyer, J. J. M. [3 ]
Bibikova, T. N. [2 ]
机构
[1] All Russia Res Inst fr Agr Microbiol, Shosse Podbelskogo 3, St Petersburg 189620 8, Pushkin, Russia
[2] Moscow MV Lomonosov State Univ, Fac Biol, Leninskiye Gory 1,Page 12, Moscow 119234, Russia
[3] Univ Pretoria, Dept Plant & Soil Sci, ZA-0002 Pretoria, South Africa
基金
俄罗斯科学基金会;
关键词
Phytohormons; PGPR; Auxin; Ethylene; Cytokinin; Gibberellin; Abscisic acid; Jasmonic acid; Salicylic acid; VARIOVORAX-PARADOXUS; 5C-2; LATERAL ROOT INITIATION; ARABIDOPSIS-THALIANA; ABSCISIC-ACID; ACC-DEAMINASE; SALICYLIC-ACID; PSEUDOMONAS-SYRINGAE; GIBBERELLIN PRODUCTION; CYTOKININ PRODUCTION; MICROBIAL-PRODUCTION;
D O I
10.1016/j.sajb.2017.07.007
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plant growth-promoting rhizobacteria (PGPR) includes a wide variety of bacterial strains from different taxonomic groups that inhabit plant roots and their rhizosphere. By bringing about complex changes in plant growth and development, PGPR can enhance both productivity of agricultural crops, and their pathogen resistance. Colonization by PGPR is associated with changes in plant metabolism, signaling and hormone homeostasis. Different PGPR strains can synthesize phytohormones, metabolize them, or affect plants' hormone synthesis and signal transduction. This review covers various mechanisms employed by PGPB to alter the homeostasis of the plant hormones auxin, ethylene, cytokinin, gibberellin, abscisic acid, jasmonic acid and salicylic acid. Keywords: (C) 2017 SAAB. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:91 / 102
页数:12
相关论文
共 50 条
  • [21] Characterization of the Bioactive Metabolites from a Plant Growth-Promoting Rhizobacteria and Their Exploitation as Antimicrobial and Plant Growth-Promoting Agents
    Emrin George
    S. Nishanth Kumar
    Jubi Jacob
    Bhaskara Bommasani
    Ravi S. Lankalapalli
    P. Morang
    B. S. Dileep Kumar
    Applied Biochemistry and Biotechnology, 2015, 176 : 529 - 546
  • [22] Root colonization by inoculated plant growth-promoting rhizobacteria
    Benizri, E
    Baudoin, E
    Guckert, A
    BIOCONTROL SCIENCE AND TECHNOLOGY, 2001, 11 (05) : 557 - 574
  • [23] Applications of free living plant growth-promoting rhizobacteria
    Lucy, M
    Reed, E
    Glick, BR
    ANTONIE VAN LEEUWENHOEK INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR MICROBIOLOGY, 2004, 86 (01): : 1 - 25
  • [24] Endophytic colonization of spruce by plant growth-promoting rhizobacteria
    Shishido, M
    Breuil, C
    Chanway, CP
    FEMS MICROBIOLOGY ECOLOGY, 1999, 29 (02) : 191 - 196
  • [25] Applications of free living plant growth-promoting rhizobacteria
    M. Lucy
    E. Reed
    Bernard R. Glick
    Antonie van Leeuwenhoek, 2004, 86 : 1 - 25
  • [26] Plant growth-promoting rhizobacteria used in South Korea
    Ibal, Jerald Conrad
    Jung, Byung Kwon
    Park, Chang Eon
    Shin, Jae-Ho
    APPLIED BIOLOGICAL CHEMISTRY, 2018, 61 (06) : 709 - 716
  • [27] Plant growth-promoting rhizobacteria and root system functioning
    Vacheron, Jordan
    Desbrosses, Guilhem
    Bouffaud, Marie-Lara
    Touraine, Bruno
    Moenne-Loccoz, Yvan
    Muller, Daniel
    Legendre, Laurent
    Wisniewski-Dye, Florence
    Prigent-Combaret, Claire
    FRONTIERS IN PLANT SCIENCE, 2013, 4
  • [28] Plant growth-promoting rhizobacteria used in South Korea
    Jerald Conrad Ibal
    Byung Kwon Jung
    Chang Eon Park
    Jae-Ho Shin
    Applied Biological Chemistry, 2018, 61 : 709 - 716
  • [29] Biocontrol of tomato wilt by plant growth-promoting rhizobacteria
    Guo, JH
    Qi, HY
    Guo, YH
    Ge, HL
    Gong, LY
    Zhang, LX
    Sun, PH
    BIOLOGICAL CONTROL, 2004, 29 (01) : 66 - 72
  • [30] Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture
    P. N. Bhattacharyya
    D. K. Jha
    World Journal of Microbiology and Biotechnology, 2012, 28 : 1327 - 1350