Design of electrically small Hilbert fractal NFRP magnetic monopole antennas

被引:5
|
作者
Dong, Tao [1 ]
Zhu, Xiang [2 ]
Li, Mei [3 ]
Zhang, Yiman [3 ]
Zhou, Boya [3 ]
Zeng, Hao [3 ]
Tang, Ming-Chun [3 ]
机构
[1] Beijing Inst Satellite Informat Engn, State Key Lab Space Ground Integrated Informat Te, Beijing, Peoples R China
[2] Univ Sci & Technol China, Dept Elect Engn & Informat Sci, Hefei, Anhui, Peoples R China
[3] Chongqing Univ, Coll Commun Engn, Minist Educ, Key Lab Dependable Serv Comp Cyber Phys Soc, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
Electrically small antennas; near-field resonant parasitic (NFRP) antennas; Hilbert fractal antennas; magnetic monopole; EFFICIENT;
D O I
10.1080/09205071.2018.1557079
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Electrically small, Hilbert fractal, near-field resonant parasitic (NFRP) antennas are reported and investigated in this paper. This type of electrically small antennas (ESAs) consists of Hilbert fractal curves as the NFRP resonators and small vertical monopoles as the driven elements. By offsetting the driven monopole off the centre position, good impedance matching can be easily realized. The current distributions on the fractal NFRP elements and the driven monopoles manifest that strong electric coupling could excite loop-mode currents along the Hilbert fractal NFRP structures, and thereby horizontal magnetic monopole patterns with broadside radiation property are realized. The results show that the 2nd-step evolution Hilbert fractal NFRP antenna witnesses an electrically size reduction of 25% compared to ka=0.9622 of the square capacitively loaded loop (CLL) NFRP antenna, while maintaining its original broadside radiation. It is also demonstrated that there is a performance trade-off, i.e. higher fractal iteration orders leading to smaller resonant frequencies, narrower bandwidth and lower radiation efficiencies.
引用
收藏
页码:454 / 464
页数:11
相关论文
共 50 条
  • [21] Design formula for Sierpinski gasket pre-fractal planar-monopole antennas
    Mishra, R. K.
    Ghatak, R.
    Poddar, D. R.
    IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2008, 50 (03) : 104 - 107
  • [22] Design of Electrically Small Antennas with Inkjet-Printing Technology
    Genovesi, Simone
    Costa, Filippo
    Monorchio, Agostino
    2016 46TH EUROPEAN MICROWAVE CONFERENCE (EUMC), 2016, : 92 - 95
  • [23] The fractal Hilbert monopole:: A two-dimensional wire
    Anguera, J
    Puente, C
    Martínez, E
    Rozan, E
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2003, 36 (02) : 102 - 104
  • [24] Hilbert curve Fractal antennas with reconfigurable characteristics
    Vinoy, KJ
    Jose, KA
    Varadan, VK
    Varadan, VV
    2001 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-3, 2001, : 381 - 384
  • [25] Biomimetic electrically small antennas
    Behdad, N.
    Al-Joumayly, M.
    Li, M.
    ELECTRONICS LETTERS, 2010, 46 (25) : 1650 - U136
  • [26] WORKSHOP ON ELECTRICALLY SMALL ANTENNAS
    HANSEN, RC
    MICROWAVE JOURNAL, 1977, 20 (02) : 66 - &
  • [27] A novel wideband electrically small monopole
    Chu, J. -H.
    Ruan, C. -L.
    Ding, C. -Y.
    Yin, C. -X.
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2008, 22 (8-9) : 1199 - 1204
  • [28] Wideband Electrically Small Monopole antenna
    Shameena, V. A.
    Manoj, M.
    Remsha, M.
    Anila, P., V
    Nair, Sreejith M.
    Mohanan, P.
    2020 XXXIIIRD GENERAL ASSEMBLY AND SCIENTIFIC SYMPOSIUM OF THE INTERNATIONAL UNION OF RADIO SCIENCE, 2020,
  • [29] Electrically small microstrip antennas
    Lee, CS
    Chen, PW
    Nalbandian, V
    IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, VOLS 1-4: TRANSMITTING WAVES OF PROGRESS TO THE NEXT MILLENNIUM, 2000, : 778 - 781
  • [30] Wideband Monopole Fractal Antenna with Hilbert Fractal Slot Patterned Ground Plane
    Oraizi, Homayoon
    Hedayati, Shahram
    2011 41ST EUROPEAN MICROWAVE CONFERENCE, 2011, : 242 - 245