Systematic characterization of the Herschel SPIRE Fourier Transform Spectrometer

被引:21
|
作者
Hopwood, R. [1 ]
Polehampton, E. T. [2 ,3 ]
Valtchanov, I. [4 ]
Swinyard, B. M. [2 ,5 ]
Fulton, T. [3 ]
Lu, N. [6 ]
Marchili, N. [7 ]
van der Wiel, M. H. D. [3 ,8 ]
Benielli, D. [9 ,10 ]
Imhof, P. [3 ,11 ]
Baluteau, J. -P. [9 ,10 ]
Pearson, C. [2 ,12 ,13 ]
Clements, D. L. [1 ]
Griffin, M. J. [14 ]
Lim, T. L. [2 ]
Makiwa, G. [3 ]
Naylor, D. A. [3 ]
Noble, G. [1 ,15 ]
Puga, E. [4 ]
Spencer, L. D. [3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England
[2] Rutherford Appleton Lab, RAL Space, Didcot OX11 0QX, Oxon, England
[3] Univ Lethbridge, Dept Phys & Astron, Inst Space Imaging Sci, Lethbridge, AB T1K 3M4, Canada
[4] ESA, Herschel Sci Ctr, European Space Astron Ctr, E-28691 Villanueva De La Canada, Spain
[5] UCL, Dept Phys & Astron, London WC1E 6BT, England
[6] CALTECH, NASA Herschel Sci Ctr, Pasadena, CA 91125 USA
[7] IAPS INAF, I-00133 Rome, Italy
[8] Univ Copenhagen, Niels Bohr Inst & Nat Hist Museum Denmark, Ctr Star & Planet Format, DK-1350 Copenhagen K, Denmark
[9] Univ Aix Marseille, LAM, F-13388 Marseille 13, France
[10] CNRS, UMR7326, F-13388 Marseille 13, France
[11] Blue Sky Spect, Lethbridge, AB T1J 0N9, Canada
[12] Open Univ, Dept Phys Sci, Milton Keynes MK7 6AA, Bucks, England
[13] Univ Oxford, Oxford Astrophys, Oxford OX1 3RH, England
[14] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales
[15] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
instrumentation: spectrographs; methods: data analysis; space vehicles: instruments; MOLECULAR ENVELOPE; NGC; 7027; CIRCUMSTELLAR ENVELOPES; FTS SPECTROSCOPY; EVOLVED STARS; AFGL; 4106; CALIBRATION; SUBMILLIMETER; TELESCOPE; NGC-7027;
D O I
10.1093/mnras/stv353
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A systematic programme of calibration observations was carried out to monitor the performance of the Spectral and Photometric Imaging REceiver (SPIRE) Fourier Transform Spectrometer (FTS) instrument on board the Herschel Space Observatory. Observations of planets (including the prime point-source calibrator, Uranus), asteroids, line sources, dark sky and cross-calibration sources were made in order to monitor repeatability and sensitivity, and to improve FTS calibration. We present a complete analysis of the full set of calibration observations and use them to assess the performance of the FTS. Particular care is taken to understand and separate out the effect of pointing uncertainties, including the position of the internal beam steering mirror for sparse observations in the early part of the mission. The repeatability of spectral-line centre positions is <5 kms(-1), for lines with signal-to-noise ratios> 40, corresponding to<0.5-2.0 per cent of a resolution element. For spectral-line flux, the repeatability is better than 6 per cent, which improves to 1-2 per cent for spectra corrected for pointing offsets. The continuum repeatability is 4.4 per cent for the SPIRE Long Wavelength spectrometer (SLW) band and 13.6 per cent for the SPIRE Short Wavelength spectrometer (SSW) band, which reduces to similar to 1 per cent once the data have been corrected for pointing offsets. Observations of dark sky were used to assess the sensitivity and the systematic offset in the continuum, both of which were found to be consistent across the FTS-detector arrays. The average point-source calibrated sensitivity for the centre detectors is 0.20 and 0.21 Jy [1 sigma; 1 h], for SLW and SSW. The average continuum offset is 0.40 Jy for the SLW band and 0.28 Jy for the SSW band.
引用
收藏
页码:2274 / 2303
页数:30
相关论文
共 50 条
  • [41] FOURIER SPECTROMETER WITH FOURIER OPTICAL TRANSFORM
    ROMANOV, AM
    OPTIKA I SPEKTROSKOPIYA, 1990, 68 (06): : 1365 - 1371
  • [42] Characterization of a Fourier transform spectrometer for the network for detection of stratospheric change
    Mankin, WG
    Coffey, MT
    Hannigan, JW
    OPTICAL SPECTROSCOPIC TECHNIQUES AND INSTRUMENTATION FOR ATMOSPHERIC AND SPACE RESEARCH II, 1996, 2830 : 34 - 40
  • [43] Transparent Fourier transform spectrometer
    Jovanov, Vladislav
    Bunte, Eerke
    Stiebig, Helmut
    Knipp, Dietmar
    OPTICS LETTERS, 2011, 36 (02) : 274 - 276
  • [44] The Geostationary Fourier Transform Spectrometer
    Key, Richard
    Sander, Stanley
    Eldering, Annmarie
    Rider, David
    Blavier, Jean-Francois
    Bekker, Dmitriy
    Wu, Yen-Hung
    Manatt, Ken
    2012 IEEE AEROSPACE CONFERENCE, 2012,
  • [45] Fieldable Fourier transform spectrometer
    Hatchell, BK
    Harper, WW
    Schultz, JF
    SPACE SYSTEMS ENGINEERING AND OPTICAL ALIGNMENT MECHANISMS, 2004, 5528 : 342 - 352
  • [46] The Geostationary Fourier Transform Spectrometer
    Key, Richard
    Sander, Stanley
    Eldering, Annmarie
    Blavier, Jean-Francois
    Bekker, Dmitriy
    Manatt, Ken
    Rider, David
    Wu, Yen-Hung
    IMAGING SPECTROMETRY XVII, 2012, 8515
  • [47] The Herschel-SPIRE instrument
    Griffin, M
    Swinyard, B
    Vigroux, L
    PROCEEDINGS OF THE DUSTY AND MOLECULAR UNIVERSE: A PRELUDE TO HERSCHEL AND ALMA, 2005, 577 : 17 - 22
  • [48] The Herschel-SPIRE instrument
    Griffin, M
    Swinyard, B
    Vigroux, L
    OPTICAL, INFRARED, AND MILLIMETER SPACE TELESCOPES, PTS 1-3, 2004, 5487 : 413 - 424
  • [49] The imaging FTS for Herschel SPIRE
    Swinyard, BM
    Dohlen, K
    Ferand, D
    Baluteau, JP
    Pouliquen, D
    Dargent, P
    Michel, G
    Martignac, J
    Ade, P
    Hargrave, P
    Griffin, M
    Jennings, D
    Caldwell, M
    IR SPACE TELESCOPES AND INSTRUMENTS, PTS 1 AND 2, 2003, 4850 : 698 - 709
  • [50] Design of Heterodyne Fourier-transform Spectrometer with a Fourier Transform Lens
    Zhu, Shuyuan
    Wu, Penghan
    Chen, Yiling
    Huang, Shan
    Zhao, Mengmeng
    Feng, Jihong
    NOVEL OPTICAL SYSTEMS, METHODS, AND APPLICATIONS XXIII, 2020, 11483