Highly-Efficient Parallel Convolution Acceleration by Using Multiple GPUs

被引:0
|
作者
Sun, Kuangyuan [1 ]
Li, Shuai [1 ]
Luo, Yukui [1 ]
Renteria, Raul [1 ]
Choi, Ken [1 ]
机构
[1] IIT, Dept Elect & Comp Engn, VLSI Design & Automat Lab, 3301 S Dearborn St, Chicago, IL 60616 USA
关键词
Convolutional neural network; parallel acceleration; multiple GPUs;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Convolutional Neural Network (CNN) is a powerful tool in machine learning area. However, the convolution computation is time-consuming, which limited the application on embedded system. In this paper, we introduce a parallel convolution acceleration implementation by using multiple GPUs Mali-T628 MP6 on embedded system Odroid XU4 and have tested its time reduction and GPU utilization. The result show that the execution time is reduced 25.8% on average.
引用
收藏
页码:300 / 301
页数:2
相关论文
共 50 条
  • [21] Speeding towards the highly-efficient shipyard
    不详
    NAVAL ARCHITECT, 1996, : 3 - 3
  • [22] Highly-Efficient Selection of Aptamers for Quantitative Fluorescence Detecting Multiple IAV Subtypes
    Wang, Meng
    Chen, Jianjun
    Zhang, Zhi-Ling
    ANALYTICAL CHEMISTRY, 2024, 96 (38) : 15347 - 15354
  • [23] Highly-Efficient Persistent FIFO Queues
    Fatourou, Panagiota
    Giachoudis, Nikos
    Mallis, George
    STRUCTURAL INFORMATION AND COMMUNICATION COMPLEXITY, SIROCCO 2024, 2024, 14662 : 238 - 261
  • [24] Future highly-efficient optical networks
    Willner, AE
    2005 Conference on Lasers & Electro-Optics (CLEO), Vols 1-3, 2005, : 1052 - 1054
  • [25] Acceleration of virtual screening using GPUs
    Sirimulla, Suman
    Koebel, Mathew
    Schmadeke, Grant
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [26] Highly-efficient 20 TW Ti:sapphire laser system using optimized diverging beams for laser wakefield acceleration experiments
    Nam, Inhyuk
    Kim, Minseok
    Lee, Tae Hee
    Lee, Seung Woo
    Suk, Hyyong
    CURRENT APPLIED PHYSICS, 2015, 15 (04) : 468 - 472
  • [27] Restacked melon as highly-efficient photocatalyst
    Wang, Yanlong
    Zhang, Yang
    Li, Baozhong
    Luo, Kun
    Shi, Kaiyuan
    Zhang, Li
    Li, Yi
    Yu, Tianjun
    Hu, Wentao
    Xie, Chenlong
    Wu, Yingju
    Su, Lei
    Dong, Xiao
    Zhao, Zhisheng
    Yang, Guoqiang
    NANO ENERGY, 2020, 77
  • [28] Clean and highly-efficient utilization of coal
    Yue, Guangxi
    Lyu, Junfu
    Li, Shuiqing
    FRONTIERS IN ENERGY, 2021, 15 (01) : 1 - 3
  • [29] Acceleration of In-Core LU-Decomposition of Dense MoM Matrix by Parallel usage of Multiple GPUs
    Mrdakovic, Branko Lj.
    Kostic, Milan M.
    Olcan, Dragan I.
    Kolundzija, Branko M.
    2017 IEEE INTERNATIONAL CONFERENCE ON MICROWAVES, ANTENNAS, COMMUNICATIONS AND ELECTRONIC SYSTEMS (COMCAS), 2017, : 372 - 375
  • [30] NTTFusion: Efficient Number Theoretic Transform Acceleration on GPUs
    Wang, Zhiwei
    Li, Peinan
    Hou, Rui
    Meng, Dan
    2023 IEEE 41ST INTERNATIONAL CONFERENCE ON COMPUTER DESIGN, ICCD, 2023, : 357 - 365