LINEAR MAPS PRESERVING TENSOR PRODUCTS OF RANK-ONE HERMITIAN MATRICES

被引:3
|
作者
Xu, Jinli [1 ]
Zheng, Baodong [1 ]
Fosner, Ajda [2 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
[2] Univ Primorska, Fac Management, SI-6104 Koper, Slovenia
关键词
quantum information science; linear preserver; tensor product; rank-one matrix; Hermitian matrix; SPACES;
D O I
10.1017/S1446788714000603
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a positive integer n >= 2, let M-n be the set of n x n complex matrices and H-n the set of Hermitian matrices in M-n. We characterize injective linear maps phi : H-m1... ml -> H-n satisfying rank(A(1) circle times . . . circle times A(l)) = 1 double right arrow rank(phi (A(1) circle times . . . circle times A(l))) = 1 for all A(k) epsilon H-mk, k = 1, . . . , l, where l; m(1), . . . , m(l) >= 2 are positive integers. The necessity of the injectivity assumption is shown. Moreover, the connection of the problem to quantum information science is mentioned.
引用
收藏
页码:407 / 428
页数:22
相关论文
共 50 条