Testing Equivalence of Polynomials under Shifts

被引:0
|
作者
Dvir, Zeev [1 ,2 ]
de Oliveira, Rafael Mendes [1 ]
Shpilka, Amir [3 ]
机构
[1] Princeton Univ, Dept Comp Sci, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[3] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel
来源
AUTOMATA, LANGUAGES, AND PROGRAMMING (ICALP 2014), PT I | 2014年 / 8572卷
关键词
DEPTH-3 ARITHMETIC CIRCUITS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Two polynomials f,g is an element of F[x(1),...,x(n)] are called shiftequivalent if there exists a vector (a(1),..., a(n)) is an element of F-n such that the polynomial identity f(x(1) + a(1),...,x(n) + a(n)) = g(x(1),..., x(n)) holds. Our main result is a new randomized algorithm that tests whether two given polynomials are shift equivalent. Our algorithm runs in time polynomial in the circuit size of the polynomials, to which it is given black box access. This complements a previous work of Grigoriev [Gri97] who gave a deterministic algorithm running in time n(O(d)) for degree d polynomials. Our algorithm uses randomness only to solve instances of the Polynomial Identity Testing (PIT) problem. Hence, if one could de-randomize PIT (a long-standing open problem in complexity) a de-randomization of our algorithm would follow. This establishes an equivalence between derandomizing shift-equivalence testing and de-randomizing PIT (both in the black-box and the white-box setting). For certain restricted models, such as Read Once Branching Programs, we already obtain a deterministic algorithm using existing PIT results.
引用
收藏
页码:417 / 428
页数:12
相关论文
共 50 条
  • [31] TESTING EQUIVALENCE OF PURE QUANTUM STATES AND GRAPH STATES UNDER SLOCC
    D'Souza, Adam G.
    Briet, Jop
    Feder, David L.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2010, 8 (1-2) : 395 - 410
  • [32] Flow equivalence and orbit equivalence for shifts of finite type and isomorphism of their groupoids
    Carlsen, Toke Meier
    Eilers, Soren
    Ortega, Eduard
    Restorff, Gunnar
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 469 (02) : 1088 - 1110
  • [33] CERTAIN POLYNOMIALS ARE ISOMORPHIC TO BERNOULLI SHIFTS
    RANADE, MS
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (04): : A429 - A429
  • [34] Twisted Alexander polynomials and representation shifts
    Silver, Daniel S.
    Williams, Susan G.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2009, 41 : 535 - 540
  • [35] HYPOTHESES OF EQUIVALENCE AND THEIR TESTING
    Garber, Lawrence L., Jr.
    Boya, Unal O.
    Hyatt, Eva M.
    JOURNAL OF MARKETING THEORY AND PRACTICE, 2018, 26 (03) : 280 - 288
  • [36] TESTING EQUIVALENCE OF CLUSTERING
    Gao, Chao
    Ma, Zongming
    ANNALS OF STATISTICS, 2022, 50 (01): : 407 - 429
  • [37] Equivalence Testing for Comparability
    Little, Thomas A.
    BIOPHARM INTERNATIONAL, 2015, 28 (02) : 45 - 48
  • [38] On equivalence and bioequivalence testing
    Ocana, Jordi
    Sanchez O, M. Pilar
    Sanchez, Alex
    Lluis Carrasco, Josep
    SORT-STATISTICS AND OPERATIONS RESEARCH TRANSACTIONS, 2008, 32 (02) : 151 - 176
  • [39] The Equivalence of Two Graph Polynomials and a Symmetric Function
    Merino, Criel
    Noble, Steven D.
    COMBINATORICS PROBABILITY & COMPUTING, 2009, 18 (04): : 601 - 615
  • [40] LIPSCHITZ EQUIVALENCE OF CANTOR SETS AND IRREDUCIBILITY OF POLYNOMIALS
    Luo, Jun Jason
    Ruan, Huo-Jun
    Wang, Yi-Lin
    MATHEMATIKA, 2018, 64 (03) : 730 - 741