Magnetic condensation, Abelian dominance, and instability of Savvidy vacuum in Yang-Mills theory

被引:8
|
作者
Kondo, K [1 ]
机构
[1] Chiba Univ, Fac Sci, Dept Phys, Chiba 2638522, Japan
来源
关键词
magnetic condensation; Abelian dominance; monopole condensation; quark confinement; Savvidy vacuum;
D O I
10.1142/S0217751X05028272
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We propose a novel type of color magnetic condensation originating from magnetic monopoles so that it provides the mass of off-diagonal gluons in the Yang-Mills theory. This dynamical mass generation enables us to explain the infrared Abelian dominance and monopole dominance by way of a non-Abelian Stokes theorem, which supports the dual superconductivity picture of quark confinement. Moreover, we show that the instability of Savvidy vacuum disappears by sufficiently large color magnetic condensation.
引用
收藏
页码:4609 / 4614
页数:6
相关论文
共 50 条
  • [31] SUPERPOSITION OF THE ABELIAN YANG-MILLS POTENTIALS
    GORSKI, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (01): : 239 - 243
  • [32] Topological Yang-Mills cohomology in pure Yang-Mills theory
    Accardi, A
    Belli, A
    Martellini, M
    Zeni, M
    PHYSICS LETTERS B, 1998, 431 (1-2) : 127 - 134
  • [33] Gluon condensation and scaling exponents for the propagators in Yang-Mills theory
    Eichhorn, Astrid
    Gies, Holger
    Pawlowski, Jan M.
    PHYSICAL REVIEW D, 2011, 83 (04):
  • [34] Gauge-independent "Abelian" and magnetic-monopole dominance, and the dual Meissner effect in lattice SU(2) Yang-Mills theory
    Kato, Seikou
    Kondo, Kei-Ichi
    Shibata, Akihiro
    PHYSICAL REVIEW D, 2015, 91 (03):
  • [35] NOTE ON THE VACUUM STRUCTURE OF AN SU(2) YANG-MILLS THEORY
    MAYER, DH
    VISWANATHAN, KS
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 67 (03) : 199 - 203
  • [36] Lower dimension vacuum defects in lattice Yang-Mills theory
    Zakharov, VI
    PHYSICS OF ATOMIC NUCLEI, 2005, 68 (04) : 573 - 581
  • [37] Topological susceptibility in the Yang-Mills theory in the vacuum correlator method
    M. N. Chernodub
    I. E. Kozlov
    JETP Letters, 2007, 86 : 1 - 5
  • [38] Lower dimension vacuum defects in lattice Yang-Mills theory
    V. I. Zakharov
    Physics of Atomic Nuclei, 2005, 68 : 573 - 581
  • [39] Abelian decomposition of Sp(2N) Yang-Mills theory
    Su, WC
    PHYSICS LETTERS B, 2001, 499 (3-4) : 275 - 279
  • [40] Abelian decomposition of SO(2N) Yang-Mills theory
    Su, WC
    EUROPEAN PHYSICAL JOURNAL C, 2001, 20 (04): : 717 - 721