Initial stages in the carbonization of (111)Si by solid-source molecular beam epitaxy

被引:47
|
作者
Cimalla, V
Stauden, T
Ecke, G
Scharmann, F
Eichhorn, G
Pezoldt, J
Sloboshanin, S
Schaefer, JA
机构
[1] Tech Univ Ilmenau, Inst Festkorperelekt, D-98684 Ilmenau, Germany
[2] Tech Univ Ilmenau, Inst Phys, D-98684 Ilmenau, Germany
关键词
D O I
10.1063/1.122801
中图分类号
O59 [应用物理学];
学科分类号
摘要
Silicon carbide can be reproducibly grown on (111)Si below 600 degrees C by carbonization using an elemental solid carbon source in molecular beam epitaxy. The initial stages were observed by in situ reflection high-energy electron diffraction. Prior to silicon carbide growth, the continuous carbon flux lead to a transition from the (7 X 7) reconstruction of clean (111)Si to a carbon-induced (root 3 x root 3)R30 degrees structure. Above 660 degrees C, the silicon carbide growth starts directly on the silicon surface via three-dimensional nucleation. Below 660 degrees C, first a thin silicon-carbon alloy was formed by diffusion of carbon into the surface near the region with a concentration exceeding the bulk solubility in silicon. (C) 1998 American Institute of Physics. [S0003-6951(98)00350-7].
引用
收藏
页码:3542 / 3544
页数:3
相关论文
共 50 条
  • [21] Migration Enhanced Epitaxy of InGaP on Offcut Ge (001) Using Solid-Source Molecular Beam Epitaxy
    Loke, Wan Khai
    Zhou, Qian
    Gong, Xiao
    Owen, Man Hon Samuel
    Wicaksono, Satrio
    Tan, Kian Hua
    Yeo, Yee-Chia
    Yoon, Soon Fatt
    2014 7TH INTERNATIONAL SILICON-GERMANIUM TECHNOLOGY AND DEVICE MEETING (ISTDM), 2014, : 75 - 76
  • [22] In(Ga)As quantum dots on InGaP layers grown by solid-source molecular beam epitaxy
    Sugaya, T.
    Oshima, R.
    Matsubara, K.
    Niki, S.
    JOURNAL OF CRYSTAL GROWTH, 2013, 378 : 430 - 434
  • [23] HEAVY CARBON DOPING OF GAAS GROWN BY SOLID-SOURCE MOLECULAR-BEAM EPITAXY
    GIANNINI, C
    FISCHER, A
    LANGE, C
    PLOOG, K
    TAPFER, L
    APPLIED PHYSICS LETTERS, 1992, 61 (02) : 183 - 185
  • [24] Iodine use in solid-source Ill-V molecular-beam epitaxy
    Micovic, M
    Miller, DL
    Flack, F
    Streater, RW
    Thorpe, AJS
    APPLIED PHYSICS LETTERS, 1996, 69 (18) : 2680 - 2682
  • [25] GaInNAs/GaAs quantum well lasers grown by solid-source molecular beam epitaxy
    Pan, Z
    Li, LH
    Wang, XY
    Lin, YW
    COMMAD 2000 PROCEEDINGS, 2000, : 491 - 496
  • [26] Initial stages in heteroepitaxy of 3C-SiC on Si by gas source molecular beam epitaxy
    Hatayama, T
    Fuyuki, T
    Matsunami, H
    SILICON CARBIDE AND RELATED MATERIALS 1995, 1996, 142 : 117 - 120
  • [27] Growth of AlGaN on Si(111) by gas source molecular beam epitaxy
    Nikishin, SA
    Faleev, NN
    Zubrilov, AS
    Antipov, VG
    Temkin, H
    APPLIED PHYSICS LETTERS, 2000, 76 (21) : 3028 - 3030
  • [28] Thermodynamic analysis of InGaP/GaAs heterostructures grown by solid-source molecular beam epitaxy
    Cao, Xue
    Shu, Yong-Chun
    Ye, Zhi-Cheng
    Pi, Biao
    Yao, Jiang-Hong
    Xing, Xiao-Dong
    Xu, Jing-Jun
    Rengong Jingti Xuebao/Journal of Synthetic Crystals, 2010, 39 (06): : 1406 - 1411
  • [29] Optical properties of highly disordered InGaP by solid-source molecular beam epitaxy with a GaP decomposition source
    Shang, XZ
    Guo, LW
    Wu, SD
    Niu, PJ
    Huang, Q
    Zhou, JM
    JOURNAL OF CRYSTAL GROWTH, 2004, 262 (1-4) : 14 - 18
  • [30] InGaP/GaAs HBT grown by solid-source molecular-beam epitaxy with a GaP decomposition source
    Niu, PJ
    Hu, HY
    Shang, XZ
    Wu, SD
    Guo, WL
    Miao, CY
    Li, XY
    Xu, Z
    Qu, D
    MICROELECTRONICS: DESIGN, TECHNOLOGY, AND PACKAGING, 2004, 5274 : 516 - 522