Thermal and optical characterization for POLARBEAR-2 optical cryostat

被引:3
|
作者
Inoue, Y. [25 ]
Stebor, N. [11 ]
Ade, P. A. R. [23 ]
Akiba, Y.
Arnold, K. [11 ]
Anthony, A. E. [2 ,5 ]
Atlas, M. [11 ]
Barron, D. [11 ]
Bender, A.
Boettger, D. [11 ]
Borrill, J. [3 ,24 ]
Chapman, S.
Chinone, Y. [10 ]
Cukierman, A. [10 ]
Dobbs, M. [21 ]
Elleflot, T. [11 ]
Errard, J. [3 ,24 ]
Fabbian, G. [1 ,15 ]
Feng, C. [11 ]
Gilbert, A. [21 ]
Halverson, N. W. [2 ,5 ,12 ]
Hasegawa, M. [13 ,25 ]
Hattori, K. [13 ]
Hazumi, M. [13 ,17 ,25 ]
Holzapfel, W. L. [10 ]
Hori, Y. [13 ]
Jaehnig, G. C. [2 ]
Jaffe, A. H. [8 ]
Katayama, N. [17 ]
Keating, B. [11 ]
Kermish, Z. [9 ]
Keskitalo, R. [3 ]
Kisner, T. [3 ,24 ]
Le Jeune, M. [1 ]
Lee, A. T. [10 ,22 ]
Leitc, E. M. [4 ,16 ]
Linder, E. [22 ]
Matsuda, F. [11 ]
Matsumura, T. [14 ]
Meng, X. [10 ]
Morii, H. [13 ]
Myers, M. J. [10 ]
Navaroli, M. [11 ]
Nishino, H.
Okamura, T. [13 ]
Paar, H. [11 ]
Peloton, J. [1 ]
Poletti, D. [1 ]
Rebeiz, G. [6 ]
Reichard, C. L. [10 ]
机构
[1] Univ Paris Diderot, Sorbonne Paris Cite, Astro Particule & Cosmol, CNRS IN2P3,CEAIrfu, Obs De Paris, France
[2] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA
[3] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA
[4] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA
[5] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA
[6] Univ Calif San Diego, Dept Elect & Comp Engn, San Diego, CA 92093 USA
[7] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 4R2, Canada
[8] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England
[9] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[10] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[11] Univ Calif San Diego, Dept Phys, San Diego, CA 92093 USA
[12] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[13] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan
[14] Japan Aerosp Explorat Agcy JAXA, ISAS, Chuo Ku, Sagamihara, Kanagawa 2525210, Japan
[15] Int Sch Adv Studies SISSA, I-34014 Trieste, Italy
[16] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA
[17] Univ Tokyo, Todai Inst Adv Study, Kavli Inst Phys & Math Univ WPI, Kashiwa, Chiba 2778583, Japan
[18] Univ Calif Berkeley, Miller Inst Basic Res Sci, Berkeley, CA 94720 USA
[19] Natl Inst Fus Sci, Toki, Gifu, Japan
[20] Osaka Univ, Toyonaka, Osaka 5600043, Japan
[21] McGill Univ, Dept Phys, Montreal, PQ H3A 0G4, Canada
[22] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA
[23] Cardiff Univ, Sch Phys & Astron, Cardiff CF10 3XQ, S Glam, Wales
[24] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
[25] Grad Univ Adv Studies, Hayama, Kanagawa 2400115, Japan
[26] Three Speed Logic Inc, Vancouver, BC V6A 2J8, Canada
关键词
Cosmic Microwave Background; IR filter; POLARBEAR-2; Polarization; Bolometer; Gravitational Wave; millimeter wave;
D O I
10.1117/12.2055572
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
POLARBEAR-2 (PB-2) is a cosmic microwave background (CMB) polarization experiment for B-mode detection. The PB-2 receiver has a large focal plane and aperture that consists of 7588 transition edge sensor (TES) bolometers at 250 mK. The receiver consists of the optical cryostat housing reimaging lenses and infrared filters, and the detector cryostat housing TES bolometers. The large focal plane places substantial requirements on the thermal design of the optical elements at the 4K, 50K, and 300K stages. Infrared filters and lenses inside the optical cryostat are made of alumina for this purpose. We measure basic properties of alumina, such as the index of refraction, loss tangent and thermal conductivity. All results meet our requirements. We also optically characterize filters and lenses made of alumina. Finally, we perform a cooling test of the entire optical cryostat. All measured temperature values satisfy our requirements. In particular, the temperature rise between the center and edge of the alumina infrared filter at 50 K is only 2.0 +/- 1.4 K. Based on the measurements, we estimate the incident power to each thermal stage.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] OPTICAL CRYOSTAT WITH MAGNETIC SYSTEM
    PEROV, AP
    VEDERNIKOV, NF
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 1988, 31 (03) : 811 - 813
  • [22] SIMPLE CRYOSTAT FOR OPTICAL MEASUREMENT
    SCHMIDT, E
    BOCANEK, L
    JOURNAL OF PHYSICS E-SCIENTIFIC INSTRUMENTS, 1971, 4 (03): : 250 - &
  • [23] Optical and thermal characterization of coatings
    UPR A0005 du CNRS, Paris, France
    Thin Solid Films, 1-2 (132-138):
  • [24] OPTICAL AND THERMAL CHARACTERIZATION OF COATINGS
    ROGER, JP
    GLEYZES, P
    ELRHALEB, H
    FOURNIER, D
    BOCCARA, AC
    THIN SOLID FILMS, 1995, 261 (1-2) : 132 - 138
  • [25] GLASS HELIUM CRYOSTAT FOR OPTICAL AND MAGNETO-OPTICAL STUDIES
    DZHIOEV, RI
    SHIRYAPOV, IP
    CRYOGENICS, 1978, 18 (05) : 304 - 304
  • [26] GLASS HELIUM CRYOSTAT FOR OPTICAL AND MAGNETO-OPTICAL INVESTIGATIONS
    DZHIOEV, RI
    SHIRYAPOV, IP
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 1977, 20 (03) : 911 - 912
  • [27] VACUUMLESS CRYOSTAT FOR OPTICAL INVESTIGATIONS OF SEMICONDUCTORS
    LUKIN, AN
    YUKISH, VA
    KAVETSKII, VS
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 1979, 22 (03) : 863 - 863
  • [28] GLASS HELIUM CRYOSTAT FOR OPTICAL MEASUREMENTS
    KULAKOV, VV
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 1976, 19 (06) : 1800 - 1801
  • [29] Adaptation of frequency-domain readout for Transition Edge Sensor bolometers for the POLARBEAR-2 Cosmic Microwave Background experiment
    Hattori, Kaori
    Arnold, Kam
    Barron, Darcy
    Dobbs, Matt
    de Haan, Tijmen
    Harrington, Nicholas
    Hasegawa, Masaya
    Hazumi, Masashi
    Holzapfel, William L.
    Keating, Brian
    Lee, Adrian T.
    Morii, Hideki
    Myers, Michael J.
    Smecher, Graeme
    Suzuki, Aritoki
    Tomaru, Takayuki
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2013, 732 : 299 - 302
  • [30] An optical cryostat for investigation of quantum crystals
    Tsymbalenko, VL
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 1997, 40 (04) : 585 - 588