Structured minimal-memory inexact quasi-Newton method and secant preconditioners for augmented Lagrangian optimization

被引:24
|
作者
Birgin, E. G. [1 ]
Martinez, J. M. [2 ]
机构
[1] Univ Sao Paulo, IME USP, Dept Comp Sci, BR-05508090 Sao Paulo, Brazil
[2] Univ Estadual Campinas, IMECC UNICAMP, Dept Appl Math, BR-13081970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
nonlinear programming; augmented Lagrangian methods; box constraints; quasi-Newton; truncated-Newton;
D O I
10.1007/s10589-007-9050-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Augmented Lagrangian methods for large-scale optimization usually require efficient algorithms for minimization with box constraints. On the other hand, active-set box-constraint methods employ unconstrained optimization algorithms for minimization inside the faces of the box. Several approaches may be employed for computing internal search directions in the large-scale case. In this paper a minimal-memory quasi-Newton approach with secant preconditioners is proposed, taking into account the structure of Augmented Lagrangians that come from the popular Powell-Hestenes-Rockafellar scheme. A combined algorithm, that uses the quasi-Newton formula or a truncated-Newton procedure, depending on the presence of active constraints in the penalty-Lagrangian function, is also suggested. Numerical experiments using the Cute collection are presented.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [21] Equality-Constrained Engineering Design Optimization Using a Novel Inexact Quasi-Newton Method
    Wang, Bingran
    Jo Joshy, Anugrah
    Hwang, John T.
    [J]. AIAA JOURNAL, 2022, 60 (11) : 6157 - 6167
  • [22] Secant penalized BFGS: a noise robust quasi-Newton method via penalizing the secant condition
    Brian Irwin
    Eldad Haber
    [J]. Computational Optimization and Applications, 2023, 84 : 651 - 702
  • [23] Practical inexact proximal quasi-Newton method with global complexity analysis
    Scheinberg, Katya
    Tang, Xiaocheng
    [J]. MATHEMATICAL PROGRAMMING, 2016, 160 (1-2) : 495 - 529
  • [24] Global inexact quasi-Newton method for nonlinear system of equations with constraints
    Arias, C. A.
    Martinez, H. J.
    Perez, R.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2020, 150 (150) : 559 - 575
  • [25] Practical inexact proximal quasi-Newton method with global complexity analysis
    Katya Scheinberg
    Xiaocheng Tang
    [J]. Mathematical Programming, 2016, 160 : 495 - 529
  • [26] AN ASYNCHRONOUS QUASI-NEWTON METHOD FOR CONSENSUS OPTIMIZATION
    Eisen, Mark
    Mokhtari, Aryan
    Ribeiro, Alejandro
    [J]. 2016 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2016, : 570 - 574
  • [27] A PROJECTIVE QUASI-NEWTON METHOD FOR NONLINEAR OPTIMIZATION
    ZHANG, JZ
    ZHU, DT
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1994, 53 (03) : 291 - 307
  • [28] Multifidelity Quasi-Newton Method for Design Optimization
    Bryson, Dean E.
    Rumpfkeil, Markus P.
    [J]. AIAA JOURNAL, 2018, 56 (10) : 4074 - 4086
  • [29] An Improved Quasi-Newton Method for Unconstrained Optimization
    Fei Pusheng
    Chen Zhong (Department of Mathematics
    [J]. Wuhan University Journal of Natural Sciences, 1996, (01) : 35 - 37
  • [30] Quasi-Newton's method for multiobjective optimization
    Povalej, Ziga
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 255 : 765 - 777