Structured minimal-memory inexact quasi-Newton method and secant preconditioners for augmented Lagrangian optimization

被引:24
|
作者
Birgin, E. G. [1 ]
Martinez, J. M. [2 ]
机构
[1] Univ Sao Paulo, IME USP, Dept Comp Sci, BR-05508090 Sao Paulo, Brazil
[2] Univ Estadual Campinas, IMECC UNICAMP, Dept Appl Math, BR-13081970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
nonlinear programming; augmented Lagrangian methods; box constraints; quasi-Newton; truncated-Newton;
D O I
10.1007/s10589-007-9050-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Augmented Lagrangian methods for large-scale optimization usually require efficient algorithms for minimization with box constraints. On the other hand, active-set box-constraint methods employ unconstrained optimization algorithms for minimization inside the faces of the box. Several approaches may be employed for computing internal search directions in the large-scale case. In this paper a minimal-memory quasi-Newton approach with secant preconditioners is proposed, taking into account the structure of Augmented Lagrangians that come from the popular Powell-Hestenes-Rockafellar scheme. A combined algorithm, that uses the quasi-Newton formula or a truncated-Newton procedure, depending on the presence of active constraints in the penalty-Lagrangian function, is also suggested. Numerical experiments using the Cute collection are presented.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [1] Structured minimal-memory inexact quasi-Newton method and secant preconditioners for augmented Lagrangian optimization
    E. G. Birgin
    J. M. Martínez
    [J]. Computational Optimization and Applications, 2008, 39 : 1 - 16
  • [2] Quasi-newton preconditioners for the inexact Newton method
    Bergamaschi, L.
    Bru, R.
    Martínez, A.
    Putti, M.
    [J]. Electronic Transactions on Numerical Analysis, 2006, 23 : 76 - 87
  • [3] Quasi-Newton preconditioners for the inexact Newton method
    Bergamaschi, L.
    Bru, R.
    Martinez, A.
    Putti, M.
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2006, 23 : 76 - 87
  • [4] A quasi-Newton augmented Lagrangian algorithm for constrained optimization problems
    Salim, M. S.
    Ahmed, A. I.
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 35 (02) : 2373 - 2382
  • [5] A modified secant equation quasi-Newton method for unconstrained optimization
    Hassan, Basim A.
    Moghrabi, Issam A. R.
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (01) : 451 - 464
  • [6] A modified secant equation quasi-Newton method for unconstrained optimization
    Basim A. Hassan
    Issam A. R. Moghrabi
    [J]. Journal of Applied Mathematics and Computing, 2023, 69 : 451 - 464
  • [7] Some Diagonal Preconditioners for Limited Memory Quasi-Newton Method for Large Scale Optimization
    Sim, Hong Seng
    Leong, Wah June
    Abu Hassan, Malik
    Ismail, Fudziah
    [J]. MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2013, 7 (02): : 181 - 201
  • [8] VOLTAGE OPTIMIZATION USING AUGMENTED LAGRANGIAN FUNCTIONS AND QUASI-NEWTON TECHNIQUES
    REHN, CJ
    BUBENKO, JA
    SJELVGREN, D
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 1989, 4 (04) : 1470 - 1483
  • [9] A non-Secant quasi-Newton Method for Unconstrained Nonlinear Optimization
    Moghrabi, Issam A. R.
    [J]. COGENT ENGINEERING, 2022, 9 (01):
  • [10] STABILIZATION OF THE SECANT METHOD VIA QUASI-NEWTON APPROACH
    BURDAKOY, OP
    [J]. LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1986, 84 : 141 - 152