Spectra, pseudospectra, and localization for random bidiagonal matrices

被引:23
|
作者
Trefethen, LN [1 ]
Contedini, M [1 ]
Embree, M [1 ]
机构
[1] Univ Oxford, Comp Lab, Oxford OX1 3QD, England
关键词
D O I
10.1002/cpa.4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There has been much recent interest, initiated by work of the physicists Hatano and Nelson, in the eigenvalues of certain random, non-Hermitian, periodic tridiagonal matrices and their bidiagonal limits. These eigenvalues cluster along a "bubble with wings" in the complex plane, and the corresponding eigenvectors are localized in the wings, delocalized in the bubble. Here, in addition to eigenvalues, pseudospectra are analyzed, making it possible to treat the nonperiodic analogues of these random matrix problems. Inside the bubble, the resolvent norm grows exponentially with the dimension. Outside, it grows subexponentially in a bounded region that is the spectrum of the infinite-dimensional operator. Localization and delocalization correspond to resolvent matrices whose entries exponentially decrease or increase, respectively, with distance from the diagonal. This article presents theorems that characterize the spectra, pseudospectra, and numerical range for the four cases of finite bidiagonal matrices, infinite bidiagonal matrices ("stochastic Toeplitz operators"), finite periodic matrices, and doubly infinite bidiagonal matrices ("stochastic Laurent operators"). (C) 2001 John Wiley & Sons, Inc.
引用
收藏
页码:595 / 623
页数:29
相关论文
共 50 条
  • [21] Localization transition in symmetric random matrices
    Metz, F. L.
    Neri, I.
    Bolle, D.
    PHYSICAL REVIEW E, 2010, 82 (03):
  • [22] LOCALIZATION IN ENSEMBLE OF SPARSE RANDOM MATRICES
    FYODOROV, YV
    MIRLIN, AD
    PHYSICAL REVIEW LETTERS, 1991, 67 (15) : 2049 - 2052
  • [23] Lyapunov spectra of correlated random matrices
    Okabe, T
    Yamada, H
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2000, (138): : 592 - 593
  • [24] Limit spectra of random gram matrices
    Serdobolskii, VI
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2004, 11 : 116 - 121
  • [25] Spectra of nearly Hermitian random matrices
    O'Rourke, Sean
    Wood, Philip Matchett
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (03): : 1241 - 1279
  • [26] Limit spectra of random gram matrices
    Serdobolskii V.I.
    Journal of Nonlinear Mathematical Physics, 2004, 11 (Suppl 1) : 116 - 121
  • [27] Approximating the weighted pseudospectra of large matrices
    Astudillo, R.
    Castillo, Z.
    MATHEMATICAL AND COMPUTER MODELLING, 2013, 57 (9-10) : 2169 - 2176
  • [28] A note on structured pseudospectra of block matrices
    Ferro, Richard
    Virtanen, Jani A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 322 : 18 - 24
  • [29] PSEUDOZEROS OF POLYNOMIALS AND PSEUDOSPECTRA OF COMPANION MATRICES
    TOH, KC
    TREFETHEN, LN
    NUMERISCHE MATHEMATIK, 1994, 68 (03) : 403 - 425
  • [30] Approximation of pseudospectra of block triangular matrices
    Roy, Nandita
    Karow, Michael
    Bora, Shreemayee
    Armentia, Gorka
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 623 : 398 - 419